Comparative phosphoproteomics analysis of the effects of L-methionine on dairy cow mammary epithelial cells

2012 ◽  
Vol 92 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Limin Lu ◽  
Xuejun Gao ◽  
Qingzhang Li ◽  
Jianguo Huang ◽  
Rong Liu ◽  
...  

Lu, L., Gao, X., Li, Q., Huang, J., Liu, R. and Li, H. 2012. Comparative phosphoproteomics analysis of the effects of L-methionine on dairy cow mammary epithelial cells. Can. J. Anim. Sci. 92: 433–442. L-methionine is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 (signal transducer and activator of transcription 5) and mTOR (mammalian target of rapamycin) regulate milk protein synthesis. But a comprehensive understanding of transcriptional and posttranscriptional regulation of milk protein synthesis is lacking. In the current study, two-dimensional gel electrophoresis (2-DE)/MS-based proteomics analysis was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effects of L-methionine on DCMECs were analyzed by CASY (Counter Analyser System) technique, reversed phase high performance liquid chromatography. The results showed that rate of cell proliferation and expression of β-casein were increased in DCMECs treated with 0.6 mM L-methionine for 24 h. Five proteins for which expression was significantly increased in DCMECs were selected, and their expression changes were verified by quantitative real-time PCR and Western blot analysis. The five up-regulated expressed phosphoproteins included Staphylococcal nuclease domain-containing protein 1(SND1), Septin-6, Glycyl-tRNA synthetase (GARS), Twinfilin-1 and eukaryotic elongation factor1-beta (eEF1B). This study revealed that availability of L-methionine influences the levels of nuclear phosphorylated proteins of DCMECs which opens a new avenue for the study of the molecular mechanism linking to milk protein synthesis.

2015 ◽  
Vol 34 (8) ◽  
pp. 524-533 ◽  
Author(s):  
Nan Jiang ◽  
Yu Wang ◽  
Zhiqiang Yu ◽  
Lijun Hu ◽  
Chaonan Liu ◽  
...  

Amino Acids ◽  
2016 ◽  
Vol 48 (9) ◽  
pp. 2179-2188 ◽  
Author(s):  
Qian Jiang ◽  
Liuqin He ◽  
Yongqing Hou ◽  
Jiashun Chen ◽  
Yehui Duan ◽  
...  

2016 ◽  
Vol 56 (11) ◽  
pp. 1803 ◽  
Author(s):  
Q. Tian ◽  
H. R. Wang ◽  
M. Z. Wang ◽  
C. Wang ◽  
S. M. Liu

The expression of CSN3, hormone receptor, the expression of genes regulating the mTOR, JAK–STAT signal pathways, and the relative content of к-casein as well as total casein were determined in the present study to explore the mechanism of the effect of lactogenic hormones on milk-protein synthesis in bovine mammary epithelial cells. The results showed that apoptosis of the cells was increased by inhibitor LY294002, while the expressions of genes encoding PKB, Rheb, PRAS40 and S6K1 in the mTOR signal pathway, JAK2, STAT5A in the JAK–STAT signal pathway, and genes encoding INSR, PRLR, NR3C1 and CSN3 were all downregulated, and the relative contents of κ-casein and total casein were decreased in the mammary epithelial cells compared with those in the control group. Comparatively, the inhibitory effects of AG-490 were more profound than those of LY294002, and the double block using both inhibitors had a greater effect than the single block. The CSN3 gene expression was downregulated and the content of milk casein was decreased by the inhibitors. In addition, the expression of the hormone receptor genes was downregulated. Our results suggest that lactogenic hormones, via their receptors in the membrane, regulated the JAK–STAT and m-TOR signal pathways, and affected cell proliferation and apoptosis, leading to changes in milk-protein synthesis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhao Chen ◽  
Yuze Ma ◽  
Qiang Ji ◽  
Xiaoru Yang ◽  
Xue Feng ◽  
...  

Staphylococcus aureus (S. aureus) is one of the main pathogens in cow mastitis, colonizing mammary tissues and being internalized into mammary epithelial cells, causing intracellular infection in the udder. Milk that is produced by cows that suffer from mastitis due to S. aureus is associated with decreased production and changes in protein composition. However, there is limited information on how mastitis-inducing bacteria affect raw milk, particularly with regard to protein content and protein composition. The main purpose of this work was to examine how S. aureus infection affects milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were infected with S. aureus, and milk protein and amino acid levels were determined by ELISA after S. aureus invasion. The activity of mTORC1 signaling and the transcription factors NF-κB and STAT5 and the expression of the amino acid transporters SLC1A3 and SLC7A5 were measured by western blot or immunofluorescence and RT-qPCR. S. aureus was internalized by BMECs in vitro, and the internalized bacteria underwent intracellular proliferation. Eight hours after S. aureus invasion, milk proteins were downregulated, and the level of BMECs that absorbed Glu, Asp, and Leu from the culture medium and the exogenous amino acids induced β-casein synthesis declined. Further, the activity of mTORC1 signaling, NF-κB, and STAT5 was impaired, and SLC1A3 and SLC7A5 were downregulated. Eight hours of treatment with 100 nM rapamycin inhibited NF-κB and STAT5 activity, SLC1A3 and SLC7A5 expression, and milk protein synthesis in BMECs. Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.


Sign in / Sign up

Export Citation Format

Share Document