Adaptation of alternative pulse and oilseed crops to the semiarid Canadian Prairie: Seed yield and water use efficiency

2008 ◽  
Vol 88 (3) ◽  
pp. 425-438 ◽  
Author(s):  
S. V. Angadi ◽  
B. G. McConkey ◽  
H. W. Cutforth ◽  
P. R. Miller ◽  
D. Ulrich ◽  
...  

Diversification and intensification of the cropping systems in the traditional wheat-fallow area of the semiarid Canadian prairie is necessary to improve sustainability. Selection of alternate crops to include in cropping systems requires information on production risks with different climate regimes. To understand water use/yield relationships of alternate crops, three pulse crops (leguminous grain crops) [chickpea (Cicer arietinum L.), pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], three oilseed crops [canola (Brassica napus L. and B. rapa L.) and mustard (B. juncea L.)], and one cereal crop [wheat (Triticum aestivum L.)] were studied under varying water regimes: during 1996–1998 under well-watered, rainfed, imposed drought conditions, and in 2001 under rainfed conditions. Generally, the relative ranking between crops for water use was maintained across water regimes, such that the crops separated into three general groups of water users (high: wheat, B. napus, mustard; medium: chickpea, B. rapa, lentil; low: pea) with pea using an average of 34 mm and 13 mm less water than high- and medium-water-using crop groups, respectively. The exceptions included desi chickpea, which tended to use less water and B. rapa, which tended to use more water relative to the other crops as water use decreased. Generally, pea and wheat produced the most grain and biomass, had the highest water use efficiency, and had moderately high to high harvest indices. Wheat and pea are well adapted to variable rainfall amounts inherent in semiarid climates. Desi chickpea and lentil produce good grain yields under dry conditions, and grain yields relative to those of other crops can be increased by some drought stress, especially mid- to late-season stress. Therefore, because of their relatively good performance under water-stressed conditions, they are also well adapted to semiarid climates. Conversely, the Brassica oilseeds yielded relatively poorly compared with wheat and pulse crops under severe water-stressed conditions, so they are not as well adapted to the semiarid climate. In 2001, grain yield of wheat and pulses seeded on stubble was ≥30% of the yield on fallow, whereas stubble-seeded Brassica oilseeds yielded only about 10% of that on fallow. Compared with stubble seeding, production of Brassica oilseeds on fallow will decrease the risk of very low yields under drought. We found little indication that mustard was more drought tolerant than B. napus. Key words: Yield, water use efficiency, oilseeds, pulse, semiarid prairie

2006 ◽  
Vol 86 (1) ◽  
pp. 99-107 ◽  
Author(s):  
H. W. Cutforth ◽  
S. V. Angadi ◽  
B. G. McConkey

Standing stubble traps snow and creates a favorable microclimate, which increases yields in wheat (Triticum aestivum L.) and pulses [chickpea (Cicer arietinum L.), field pea (Pisum sativum L.) and lentil (Lens culinaris L.)]. Generally, the taller the stubble the greater is the effect on microclimate and yield. A field study using farm-scale seeding and harvesting equipment was conducted over four seasons (1999 to 2002) to assess the effect of stubble management on the microclimate, water use and seed yield of argentine canola (Brassica napus L. ‘Arrow’) in the semiarid prairie surrounding Swift Current. Tall (30 cm), short (15 cm) and cultivated stubble treatments were deployed in fall and in spring. An additional tall stubble treatment with extra fertilizer N (application rate recommended for the Black soil zone in the subhumid prairie) was included to assess the role of fertilizer in canola response to stubble management practices. The differences in wind velocity, soil temperature and solar radiation reaching the soil surface indicated significant modification of the microclimate by tall compared with cultivated stubble. Yields were highest from the tall stubble receiving extra fertilizer. Further research is needed to determine optimum fertilizer rates to maximize canola yields in the semiarid prairie. For treatments receiving equivalent rates of fertilizer, tall stubble increased seed yield of canola by about 24% and water use efficiency (WUE) by about 19% compared with stubble cultivated in the fall. Comparing between stubble treatments deployed on fields that overwintered as tall stubble and which received equivalent rates of fertilizer, tall stubble increased canola yield by about 16% and WUE by about 11% compared with cultivated stubble. Crop water use was not affected by stubble management so the increased grain production was due to increased WUE. Key words: Stubble height, microclimate, canola, yield, water use efficiency


2001 ◽  
Vol 81 (1) ◽  
pp. 29-43 ◽  
Author(s):  
P. R. Miller ◽  
C. L. McDonald ◽  
D. A. Derksen ◽  
J. Waddington

To develop diversified cropping systems for the dry semiarid prairie, the adaptation of alternative crops must be known. This experiment compared the adaptation of seven pulse and oilseed crops—desi chickpea (Cicer arietinum L.), dry bean (Phaseolus vulgaris L.), dry pea (Pisum sativum L.), lentil (Lens culinaris L.), mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.), and sunflower (Helianthus annuus L.) — with spring wheat (Triticum aestivum L.), using two tillage practices — no-till and minimum tillage, including both fallow and wheat stubble-field phases. It was conducted near Swift Current, SK 1992–1996, and on a commercial farm near Congress, SK 1994–1995. Tillage system had no consistent effect on plant densities, which were generally adequate. Mustard, desi chickpea, dry pea and lentil required fewer degree days (5°C base) to reach anthesis, compared with wheat, while safflower and sunflower required more than wheat. Dry pea generally matured sooner than wheat, while lentil and mustard matured earlier than wheat only in years when near normal climatic conditions occurred. All other crops generally matured later than wheat. Safflower required an additional 400 degree-days and as a result presents considerable production risk in the semi arid prairies. Dry pea grain yields averaged 103% of wheat when grown on fallow and 135% of wheat when grown on stubble. Chickpea, lentil and dry pea yielded 76%, 77% and 90%, respectively, of their fallow-field yields when grown on stubble, indicating that the pulse crops have excellent potential for intensifying cropping systems in the dry semiarid prairie by replacing summerfallow in crop rotations. In contrast, wheat and mustard grown on stubble yielded only 66 and 61%, respectively, of fallow-field yields, suggesting they are not as well suited for stubble-cropping as the pulse crops. Low and highly variable yields were observed for safflower, dry bean and sunflower in both field-phases, although the yields from dwarf hybrid sunflower in the latter 2 yr of the study appeared promising. Low seed N concentration in wheat indicated yields were limited by soil-available N in most years, due to the generally wetter than normal growing seasons encountered during this study. The mean N yield (seed N concentrat ion × grain yield) of dry pea was double that for chickpea and lentil, indicating that dry pea fixed the greatest amount of atmospheric N2. Water-use efficiency for dry pea averaged 9.4 kg ha–1 mm–1 compared with 7.4 kg ha–1 mm–1 for wheat. Dry pea, chickpea, lentil, mustard and sunflower have good potential for diversifying cropping systems in the dry semiarid prairie. Key words: Oilseeds, pulses, adaptation, semiarid prairie, tillage systems, water-use efficiency


2015 ◽  
Vol 152 ◽  
pp. 142-150 ◽  
Author(s):  
Darunee Puangbut ◽  
Sanun Jogloy ◽  
Nimitr Vorasoot ◽  
Supalax Srijaranai ◽  
Corley Carl Holbrook ◽  
...  

2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


2018 ◽  
Vol 156 (5) ◽  
pp. 628-644 ◽  
Author(s):  
E. Pohanková ◽  
P. Hlavinka ◽  
M. Orság ◽  
J. Takáč ◽  
K. C. Kersebaum ◽  
...  

AbstractIn the current study, simulations by five crop models (WOFOST, CERES-Barley, HERMES, DAISY and AQUACROP) were compared for 7–12 growing seasons of spring barley (Hordeum vulgare) at three sites in the Czech Republic. The aims were to compare how various process-based crop models with different calculation approaches simulate different values of transpiration (Ta) and evapotranspiration (ET) based on the same input data and compare the outputs of these simulations with reference data. From the outputs of each model, the water use efficiency (WUE) from Ta (WUETa) and from actual ET (WUEETa) was calculated for grain yields and above-ground biomass yield. The results of the first part of the study show that the model with the Penman approach for calculating ET simulates lower actual ET (ETa) sums, at an average of 250 mm during the growing season, than other models, which use the Penman–Monteith approach and simulate 330 mm on average during the growing season. In the second part of the current study, WUE reference values in the range 1.9–2.4 kg/m3were calculated for spring barley and grain yield. Values of WUETa/WUEETacalculated from the outputs of individual models for grain yields and above-ground biomass yields ranged from 2.0/1.0 to 5.9/3.8 kg/m3with an average value of 3.2/2.0 kg/m3and from 3.9/2.1 to 10.5/6.8 kg/m3with an average value of 6.5/4.0 kg/m3, respectively. The results confirm that the average values of all models are nearest to actual values.


2016 ◽  
Vol 13 (2) ◽  
pp. 94-107 ◽  
Author(s):  
S Roy ◽  
M Barman ◽  
AM Puste ◽  
SK Gunri ◽  
K Jana

Field experiment was conducted at Instructional Farm, Jaguli (Mohanpur), Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during two consecutive summer seasons of 2010-11, and 2011-12. The experiment was laid out in split-plot design having 4 levels of irrigation– rainfed without mulch, rainfed with mulch, irrigation at IW (depth of irrigation water) / CPE (Cumulative pan evaporation) ratios of 0.5 and 0.75 in main-plot and 4 inter cropping systems, sole maize, sole mungbean, maize + mungbean (1:1 row ratio) and maize + mungbean (3:2 row ratio) considered as sub-plot treatments replicated thrice. Results revealed that application of irrigation and intercropping systems markedly influenced the growth, yield and yield components (number of cobs/plant, number of grains/cob in case of maize and number of pods/plant and number of seeds/pod in case of mungbean) where the maximum value of these components were recorded with the application of irrigation at IW/CPE ratio 0.75 in sole crop. Maize-mungbean in 3:2 row ratio yielded higher than that of 1:1 intercropping system which might be due to less light interception and more competition for water and nutrition between both the crops. CU of water increased with the increasing levels of irrigation and the maximum value (17.75 kg ha-1 mm- 1) of WUE (water use efficiency) was observed with irrigation at IW: CPE ratio 0.75 under intercropping system of maize : mungbean in 3:2 row ratio followed by IW: CPE ratio 0.50. Among the sole crop, maximum WUE was with IW/CPE ratio 0.75 might be due to more consumption of water corresponding to production potential of maize, while, it was more under rainfed with mulch in mungbean. The relative crowding coefficient (RCC) also revealed both the intercropping systems were advantageous and the land equivalent ratio (LER) increased with the level of irrigation.Thus, maize grown in association with mungbean (3:2 row ratio) were found to be more profitable (B:C ratio of 2.58) with higher monetary advantage as compared to sole crop of maize (B:C ratio of 1.98) with the application of irrigation at IW: CPE ratio of 0.75 in new alluvial zone of West Bengal.SAARC J. Agri., 13(2): 94-107 (2015)


1997 ◽  
Vol 37 (6) ◽  
pp. 667 ◽  
Author(s):  
W. M. Strong ◽  
R. C. Dalal ◽  
J. E. Cooper ◽  
J. A. Doughton ◽  
E. J. Weston ◽  
...  

Summary. Continuous cereal cropping in southern Queensland and northern New South Wales has depleted native soil nitrogen fertility to a level where corrective strategies are required to sustain grain yields and high protein content. The objective of this study was to examine the performance of chickpea in chickpea–wheat rotations in terms of yields, water use and N2 fixation. The effects of sowing time and tillage practice have been studied. Chickpea grain yields varied from 356 kg/ha in 1995 to 2361 kg/ha in 1988; these were significantly correlated with the total rainfall received during the preceding fallow period and crop growth. Almost 48% of total plant production and 30% of total plant nitrogen were below-ground as root biomass. Mean values of water-use efficiency for grain, above-ground dry matter, and total dry matter were 5.9, 14.2 and 29.2 kg/ha.mm, respectively. The water-use efficiency for grain was positively correlated with the total rainfall for the preceding fallow and crop growth period although cultural practices modified water-use efficiency. The potential N2 fixation was estimated to be 0.6 kg nitrogen/ha.mm from 1992 total dry matter nitrogen yields assuming all of the nitrogen contained in chickpea was derived from the atmosphere. Sowing time had a much larger effect on grain yield and N2 fixation by chickpea than tillage practice (conventional tillage and zero tillage) although zero tillage generally increased grain yields. The late May–early June sowing time was found to be the best for chickpea grain yield and N2 fixation since it optimised solar energy use and water use, and minimised frost damage. Nitrogen fixation by chickpea was low, less than 40% nitrogen was derived from atmosphere, representing less than 20 kg nitrogen/ha.year. The potential for N2 fixation was not attained during this period due to below-average rainfall and high soil NO3-N accumulation because of poor utilisation by the preceding wheat crop. Increased soil NO3-N due to residual from fertiliser N applied to the preceding wheat crop further reduced N2 fixation. A simple soil nitrogen balance indicated that at least 60% of crop nitrogen must be obtained from N2 fixation to avoid continued soil nitrogen loss. This did not occur in most years. The generally negative soil nitrogen balance needs to be reversed if chickpea is to be useful in sustainable cropping systems although it is an attractive cash crop. Sowing time and zero tillage practice, possibly combined with more appropriate cultivars, to enhance chickpea biomass, along with low initial soil NO3-N levels, would provide maximum N2 fixation.


2015 ◽  
Vol 95 (4) ◽  
pp. 779-786 ◽  
Author(s):  
S. M. Ross ◽  
J. R. King ◽  
C. M. Williams ◽  
S. M. Strydhorst ◽  
M. A. Olson ◽  
...  

Ross, S. M., King, J. R., Williams, C. M., Strydhorst, S. M., Olson, M. A., Hoy, C. F. and Lopetinsky, K. J. 2015. The effects of three pulse crops on a second subsequent crop. Can. J. Plant Sci. 95: 779–786. Pulse crops can provide benefits to cropping systems, but few studies follow the effects beyond one subsequent crop. This study investigated the effects of three pulses on 2 yr of subsequent crops at Barrhead and St. Albert in central Alberta. In year 1 (YR1), field pea (Pisum sativum L.), faba bean (Vicia faba L.), lupin (Lupinus angustifolius L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) were grown without added N. The design included plus N controls, eight different crops in YR2, and barley in YR3. YR1 effects on YR3 barley varied between sites and years, and drought conditions in 2009 affected results. Effects of YR1 faba bean were greater than pea or lupin. Increases in YR3 barley grain yields averaged 11% (0.33 Mg ha–1) and increases in seed N yields averaged 11% (7.2 kg N ha–1) after YR1 faba bean, compared with after YR1 canola or barley without added N (BCO). Increases in YR3 barley grain yields and seed N yields averaged 3 to 5% after YR1 pea or lupin, compared with BCO.YR1 crops had few effects on YR3 barley P uptake. Results indicated that pulse crops can improve the yield and quality of a second subsequent crop.


Sign in / Sign up

Export Citation Format

Share Document