Cloning and differential expression of a plum single repeat-MYB, PdMYB3, in compatible and incompatible interactions during fungal infection

2013 ◽  
Vol 93 (4) ◽  
pp. 599-605 ◽  
Author(s):  
Ashraf El-kereamy ◽  
Subramanian Jayasankar

El-kereamy, A. and Jayasankar, S. 2013. Cloning and differential expression of a plum single repeat-MYB, PdMYB3, in compatible and incompatible interactions during fungal infection. Can. J. Plant Sci. 93: 599–605. Enhancing resistance to pathogen attack through conventional breeding is a major challenge, especially in perennial species. Monilinia fructicola fungal infection causes brown rot disease, resulting in economic damage of stone fruits at flowering, pre- and post-harvest stages. The molecular mechanism of resistance to this disease is still not known. In the present study, we cloned and analyzed the expression of a novel MYB transcription factor from European plums (PdMYB3) induced in response to M. fructicola fungal infection. The identified PdMYB3 is a single repeat-MYB protein that contains a conserved SHAQKYF motif. Monilinia fructicola infection induces the expression of PdMYB3 in fruits of four cultivars within 24 h; however, it is differentially expressed in the susceptible and resistant varieties. By comparing four different cultivars we found that PdMYB3 is induced in much higher levels in the susceptible cultivars than the resistant ones. In addition the PdMYB3 expression is higher in the early stages of fruit development prior to pit hardening, suggesting a potential role for PdMYB3 during this stage. Promoter analysis revealed the presence of some hormone cis-elements suggesting a possible role for PdMYB3 gene in transmitting a signal from the hormonal pathways to downstream components during host-pathogen interactions.

Agriculture ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 125 ◽  
Author(s):  
Vitus Ikechukwu Obi ◽  
Juan José Barriuso ◽  
Yolanda Gogorcena

The peach is one of the most important global tree crops within the economically important Rosaceae family. The crop is threatened by numerous pests and diseases, especially fungal pathogens, in the field, in transit, and in the store. More than 50% of the global post-harvest loss has been ascribed to brown rot disease, especially in peach late-ripening varieties. In recent years, the disease has been so manifest in the orchards that some stone fruits were abandoned before harvest. In Spain, particularly, the disease has been associated with well over 60% of fruit loss after harvest. The most common management options available for the control of this disease involve agronomical, chemical, biological, and physical approaches. However, the effects of biochemical fungicides (biological and conventional fungicides), on the environment, human health, and strain fungicide resistance, tend to revise these control strategies. This review aims to comprehensively compile the information currently available on the species of the fungus Monilinia, which causes brown rot in peach, and the available options to control the disease. The breeding for brown rot-resistant varieties remains an ideal management option for brown rot disease control, considering the uniqueness of its sustainability in the chain of crop production.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 987-991 ◽  
Author(s):  
Lynn Williamson ◽  
Kazuhiro Nakaho ◽  
Brian Hudelson ◽  
Caitilyn Allen

Ralstonia solanacearum race 3, biovar 2 is a soilborne bacterium that causes potato brown rot disease in temperate and subtropical climates. Recent outbreaks of this disease in Europe have caused serious losses, but the pathogen had not been identified in the United States. However, in 1999, strains of R. solanacearum were isolated from wilting geraniums growing in Wisconsin greenhouses. Physiological and biochemical tests of the Wisconsin strains and a similar strain from South Dakota demonstrated that the strains belong to R. solanacearum subgroup biovar 2, which is largely synonymous with the race 3 subgroup, a classification based on host range. These results were confirmed by polymerase chain reaction analyses in which race 3, biovar 2-specific primers amplified a fragment of the expected size. This is the first report of race 3, biovar 2 in the United States, and it is the first known occurrence of race 3, biovar 2 in Wiscon-sin. The geranium strains were highly pathogenic on both geranium and potato. The presence of R. solanacearum race 3, biovar 2 in the United States raises concern that the bacterium could move from ornamental plants into potato fields, where it could cause both direct economic damage and quarantine problems. A commercial indirect enzyme-linked immunosorbent assay for R. solanacearum produced some false negatives for these strains, indicating that current indexing may not be sufficient to identify this destructive pathogen.


2018 ◽  
Vol 108 (11) ◽  
pp. 1315-1325 ◽  
Author(s):  
Domenico Abate ◽  
Rita M. De Miccolis Angelini ◽  
Caterina Rotolo ◽  
Stefania Pollastro ◽  
Francesco Faretra

Monilinia fructicola, M. laxa, and M. fructigena are the most important pathogens responsible for brown rot disease of stone and pome fruits. Information on their mating system and sexual behavior is scant. A mating-type-specific PCR-based assay was developed and applied to 155 Monilinia isolates from 10 countries and 10 different host plants. We showed that single isolates carry only one of two opposite idiomorphs at the MAT1 locus consistent with a heterothallic mating system for all three species. MAT1-1 and MAT1-2 mating types were detected in similar proportions in samples of isolates of each species and hence there do not appear to be genetic obstacles to the occurrence of sexual reproduction in their populations. Inter simple sequence repeat markers suggested that asexual reproduction is prevalent, but that sexual recombination occurs in M. fructicola populations in Italy. The genetic architectures of the MAT1 loci of the three pathogens were analyzed. MAT1-1 and MAT1-2 idiomorphs are flanked upstream and downstream by the APN2 and SLA2 genes and resemble those of Botrytis cinerea and other heterothallic fungi in the family Sclerotiniaceae. Each idiomorph contains a specific couple of genes, MAT1-1-1 (with alpha-box domain) and MAT1-1-5 in MAT1-1, and MAT1-2-1 (with HMG-box domain) and MAT1-2-10 in MAT1-2. Small gene fragments (dMAT1-1-1 and dMAT1-2-1) from the opposite idiomorph were detected close to their flanking regions. Constitutive expression of the four MAT1 genes during vegetative growth was ascertained by transcriptomic analysis (RNA-Seq). Antisense transcription of the MAT1-1-1 and MAT1-2-1 genes and intergenic transcribed regions of the MAT1 locus were detected. These results represent new insights into the mating systems of these three economically-important pathogens which could contribute to improve the knowledge on their population biology.


2018 ◽  
Vol 108 (10) ◽  
pp. 1141-1142 ◽  
Author(s):  
Yazmín Rivera ◽  
Kurt Zeller ◽  
Subodh Srivastava ◽  
Jeremy Sutherland ◽  
Marco Galvez ◽  
...  

Fungi in the genus Monilinia cause brown rot disease of stone and pome fruits. Here, we report the draft genome assemblies of four important phytopathogenic species: M. fructicola, M. fructigena, M. polystroma, and M. laxa. The draft genome assemblies were 39 Mb (M. fructigena), 42 Mb (M. laxa), 43 Mb (M. fructicola), and 45 Mb (M. polystroma) with as few as 550 contigs (M. laxa). These are the first draft genome resources publicly available for M. laxa, M. fructigena, and M. polystroma.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 645-651 ◽  
Author(s):  
F. Chen ◽  
X. Liu ◽  
S. Chen ◽  
E. Schnabel ◽  
G. Schnabel

In 2011 and 2012, significant brown rot disease caused by Monilinia fructicola was observed in a peach orchard in Spartanburg County, SC, despite preharvest fungicide applications of demethylation inhibitor (DMI), quinone outside inhibitor (QoI), and succinate dehydrogenase inhibitor (SDHI) fungicides. All 22 isolates obtained in 2011 from this orchard were sensitive to the QoI fungicide, azoxystrobin, and the methyl benzimidazole carbamate (MBC) fungicide, thiophanate-methyl. Five were resistant to the DMI fungicide, propiconazole, and were selected, together with five propiconazole-sensitive isolates, for further investigations. One of the 10 isolates was resistant to propiconazole but sensitive to the SDHI fungicide, boscalid (EC50 = 0.42 μg/ml), 3 were resistant to propiconazole with intermediate sensitivity to boscalid (EC50 0.72 to 2.1 μg/ml); 2 were sensitive to propiconazole with intermediate sensitivity to boscalid; 3 were sensitive to propiconazole but resistant to boscalid (EC50 ≥ 2.1 μg/ml); and 1 (isolate MD22) was resistant to both propiconazole and boscalid. Disease incidence on detached fruit treated with formulated propiconazole or boscalid was significantly higher for MD22 compared to a sensitive control isolate. Continued monitoring of fungicide resistance in the same orchard in 2012 revealed an increase of isolates resistant to propiconazole from 22.7% in 2011 to 34.7%, and an increase of isolates resistant to both propiconazole and boscalid from 4.5% in 2011 to 18.4%. Propiconazole resistance was always associated with the presence of the ‘Mona’ mobile element located upstream of the sterol 14α-demethylase (MfCYP51) gene. To investigate whether mutations in the subunits of the succinate dehydrogenase enzyme were involved in boscalid resistance, significant portions of the M. fructicola SdhA, SdhB, SdhC, and SdhD genes were cloned and analyzed for 2 sensitive, 2 boscalid-resistant, and 6 dual-resistant isolates. Although sequence variation was found among the isolates, no single change correlated with resistance. Interestingly, analysis of isolates collected from orchards in 2001 and 2002, prior to the registration of boscalid, revealed a range of sensitivities to boscalid (EC50 0.03 to 3.46 μg/ml) including boscalid-resistant isolates. The presence of boscalid-resistant isolates in the baseline population was unexpected and requires further investigation.


Sign in / Sign up

Export Citation Format

Share Document