EFFECTS OF BORON, MOLYBDENUM AND LIME ON YIELD AND LEAF TISSUE NUTRIENT CONCENTRATION OF GREEN PEAS

1986 ◽  
Vol 66 (4) ◽  
pp. 971-976 ◽  
Author(s):  
J. A. CUTCLIFFE

The effects of preplant soil applications of B, Mo and dolomitic limestone on yields and leaf tissue nutrient concentrations of Rally peas were investigated at five locations with initial soil pH levels of 5.1–5.9. Experiments were conducted for two consecutive growing seasons at each location. All treatments were preplant incorporated in a 2 × 2 × 2 factorial design with five replicates. Yields of shelled peas, adjusted to tenderometer 100, varied between experiments from 1.1 to 4.8 × 103 kg ha−1 and were not generally affected by B, Mo or lime at application rates of 2.0, 0.25 and 10 000 kg ha−1, respectively. Also, the micronutrient and lime treatments had no significant effects on germination, vine length, pea/vine ratio or maturity. Leaf tissue B, Mo and Mg concentrations were increased by the applications of B, Mo and dolomitic limestone, respectively. However, leaf tissue Ca concentration was not affected by the lime treatment. The results indicate that leaf tissue concentrations of 16–74 μg g−1 B, 0.04–1.34 μg g−1 Mo and 0.23–0.55% Mg were within the sufficiency range.Key words: Peas, boron, molybdenum, dolomitic limestone, yield, leaf tissue concentration

1984 ◽  
Vol 64 (4) ◽  
pp. 945-949 ◽  
Author(s):  
J. A. CUTCLIFFE ◽  
C. R. BLATT

Experiments were conducted to investigate the effects of applications of N, P, K, B and dolomitic limestone on yields of strawberry (Fragaria × ananassa Duch ’Redcoat’). Yields were increased by applied N and P, but were not affected by added potassium or boron. Second crop yields were increased by a greater extent than first crop yields by both N and P. First crop yields were increased by a pre-planting application of dolomitic limestone on a sandy loam soil with initial pH of 4.9. Leaf tissue concentrations at full bloom of 1.4–3.2% N, 0.17 to 0.34% P, 0.7 to 1.6% K, and 26–57 ppm B appear to be in the sufficiency range for the cultivar Redcoat. The concentrations of these elements in strawberry leaf tissue were lower after harvest than at full bloom.Key words: Strawberry fertility, leaf tissue concentration


1980 ◽  
Vol 60 (2) ◽  
pp. 599-604 ◽  
Author(s):  
J.A. CUTCLIFFE ◽  
D.C. MUNRO

The effects of nitrogen, phosphorus, and potassium on the yields of Dark Skin Perfection peas were investigated at nine locations during three successive cropping seasons. All three nutrients were applied broadcast at rates of 0, 30, 60, and 90 kg/ha in randomized block experiments with four replicates. A lime treatment was also included consisting of an application of dolomitic limestone in the furrow with the seed at the rate of 400 kg/ha. Yields of shelled peas, adjusted to tenderometer 100, varied from approximately 4 to 7 tonnes/ha and were not substantially affected by the fertilizer or lime treatments. Germination was in the range of 85–95% and was not affected by the treatments. Vine length tended to increase as the rate of all three nutrients was increased, but the pea/vine ratio (by weight) was not affected. Maturity was slightly delayed by increasing rates of added nitrogen and slightly advanced by increasing rates of added phosphorus.


2021 ◽  
pp. 1-11
Author(s):  
Tekan S. Rana ◽  
Erick D. Smith ◽  
Cain Hickey ◽  
Mark Hoffmann

More than 3000 acres of commercial muscadine (Vitis rotundifolia) vineyards exist in the southeastern United States. The muscadine wine industry is generating an economic impact of $1 billion in North Carolina alone. Muscadines have been cultivated since the 1800s, but muscadine vineyard fertilizer programs, tissue sampling, and nutrient sufficiency ranges continue to be based on anecdotal knowledge. While seasonal changes in tissue nutrient concentration are well documented in bunch grape (Vitis vinifera), questions remain about the seasonal and cultivar-dependent dynamics of muscadine leaf tissue nutrient concentrations. The aim of this study was to assess temporal and cultivar-related differences in tissue nutrient concentration of mature commercially grown muscadines. Leaf tissue nutrient concentration of the muscadine cultivars Carlos and Noble were assessed in three vineyards (Piedmont North Carolina, north Georgia, and south Georgia) at bloom, véraison, and postharvest in 2018 and 2019. Our results show that nitrogen (N), phosphorus (P), and manganese (Mn) were generally above the recommended sufficiency ranges, with calcium increasing over the season—and N, P, and potassium decreasing over the season. ‘Carlos’ had significantly higher levels of N and P, compared with ‘Noble’, while ‘Noble’ showed higher Mn concentration than ‘Carlos’. With this evaluation, we demonstrate the need for a modification in muscadine tissue nutrient sufficiency ranges that are based on cultivar and vine growth stage.


HortScience ◽  
2014 ◽  
Vol 49 (8) ◽  
pp. 1076-1080 ◽  
Author(s):  
Nicholas Menchyk ◽  
Douglas G. Bielenberg ◽  
Samuel Martin ◽  
Clint Waltz ◽  
Hong Luo ◽  
...  

As a result of the increasing popularity of fine-leafed zoysiagrasses on golf courses, a 2-year field study was conducted to assess ‘Diamond’ zoysiagrass [Zoysia matrella (L.) Merr.] putting green performance at The Cliff’s Communities Turfgrass Research Facility in Marietta, SC. Factors included four nitrogen (N) fertility rates and two trinexapac-ethyl (TE) regimes. Foliar applications of 0, 4.9, 9.8, and 14.7 kg·ha−1 N were made once weekly for 7 and 15 weeks in 2009 and 2010, respectively. Trinexapac-ethyl was tank-mixed and applied weekly for 7 weeks during July to August at 0 or 0.017 kg a.i./ha totaling 0.120 kg a.i./ha for both growing seasons. Putting green performance was measured by assessing turf quality (TQ), ball roll distance (BRD), surface firmness (SF), leaf tissue nutrient concentrations, and thatch accumulation. Turfgrasses receiving 4.9 kg N/ha weekly exhibited acceptable TQ and greater SF and BRD than plots receiving 14.7 kg N/ha weekly on all rating dates in 2010 before seasonal dormancy. Trinexapac-ethyl reduced clipping yield by 15% to 43% and influenced BRD, SF, and tissue nutrient concentration across the 2-year study. Surface firmness decreased as total N input increased during the 2010 growing season and is presumably the result of an increase in leaf tissue causing a cushioned putting surface. Linear regression of thatch accumulation and SF were analyzed and found to be significant at four rating dates in 2010 indicating that as thatch organic matter increased, SF decreased. Nitrogen input for ‘Diamond’ zoysiagrass putting greens grown in the transition zone should begin at 73.5 kg·ha−1/year with supplemental N applications applied as needed.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 221
Author(s):  
Paul Cockson ◽  
Patrick Veazie ◽  
Matthew Davis ◽  
Gabby Barajas ◽  
Angela Post ◽  
...  

Many abiotic factors impact the yield and growth of Brassica carinata (commonly referred to as carinata or Ethiopian mustard). Very little is known about carinata and how mineral nutrients impact its growth, and more specifically, the sufficiency values for fertility over the plant’s growth cycle and life stages. This study explored the impacts that plant nutrients, specifically micronutrients, can have on the growth and development of carinata over its distinct life stages (rosette, bolting, flowering, and pod set). Plants were grown under varying micronutrient concentrations (0, 25, 50, 75, 87.5, and 100%) of a modified Hoagland’s solution. Data were collected on plant height, canopy diameter, leaf tissue mineral nutrient concentrations, and biomass. The results demonstrated that micronutrient fertility has profound impacts on the production of Brassica carinata during different life stages. Boron (B) exclusion had the greatest impact on the growth and reproduction of Brassica carinata, with the death of the apical meristem that resulted in a lack of siliques or seeds at the lowest rate. Optimal relative elemental leaf tissue concentrations varied among micronutrient fertility concentrations and life stages. Certain elements exhibited linear increases in nutrient leaf tissue accumulation as solution concentration increased without reaching a maximum concentration during specific life stages. Other life stages and/or elements produced distinct plateau leaf tissue mineral concentrations despite increasing fertility treatment concentrations such as B in the rosette stage (47.2–50.0 mg·kg−1), copper (Cu) (bolting stage at 6.62–7.57 mg·kg−1), zinc (Zn) (bolting stage at 27.47–39.87 and flowering at 33.98–43.50 mg·kg−1), molybdenum (Mo) (flowering stage at 2.42–3.23 mg·kg−1), and manganese (Mn) (bolting stage at 117.03–161.63 mg·kg−1). This work demonstrates that Brassica carinata has different fertility demands and will accumulate differing leaf tissue concentrations during its life stages. This work serves as a baseline for further uptake and portioning work for Brassica carinata.


1988 ◽  
Vol 68 (3) ◽  
pp. 611-615 ◽  
Author(s):  
J. A. CUTCLIFFE

Field experiments were carried out at different locations in Prince Edward Island each year for 3 consecutive years to determine the effects of calcific limestone, dolomitic limestone, and gypsum on yields and nutrition of two cultivars of Brussels sprouts (Brassica oleracea var. gemmifera). The soils at the sites selected had initial pH levels of 4.9–5.7. Preplant, broadcast applications of gypsum at 5.5 t ha−1 resulted in yield increases of about 30% at all locations. Analysis of leaf tissue collected when the sprouts began to form indicated that Ca, Mg, Mn and Zn concentrations of approximately 1.4–2.6%, 0.25–0.32%, 88–274 μg g−1 and 26–35 μg g−1, respectively, are within the sufficiency range. The incidence of internal browning was not affected by either the lime or gypsum treatments at the two locations where this disorder occurred. Key words: Lime, gypsum, yield, leaf tissue nutrient concentration, internal browning, Brussels sprouts


HortScience ◽  
2020 ◽  
Vol 55 (8) ◽  
pp. 1303-1307
Author(s):  
W. Garrett Owen

The objective of this study was to determine optimum fertilizer concentrations, identify leaf tissue nutrient sufficiency ranges by chronological age, and establish leaf tissue nutrient standards of containerized Russian sage (Perovskia sp.). Common Russian sage (P. atriplicifolia Benth.) and ‘Crazy Blue’ Russian sage were greenhouse-grown in a soilless substrate under one of six constant liquid fertilizer concentrations [50, 75, 100, 200, 300, or 400 mg·L−1 nitrogen (N)] with a constant level of a water-soluble micronutrient blend. Fertilizer concentrations sufficient for optimal plant growth and development were determined by analyzing plant height, diameter, growth index, primary shoot caliper, axillary shoot number, and total dry mass; they were found to be 100 to 200 mg·L−1 N after a 6-week crop cycle. Recently, mature leaf tissue samples were collected from plants fertilized with 100 to 200 mg·L−1 N and analyzed for elemental contents of 11 nutrients at 2, 4, and 6 weeks after transplant (WAT). An overall trend of increasing foliar nutrient concentrations over time was observed for all elemental nutrients. For instance, at 2 WAT, the total N concentrations of common Russian sage and ‘Crazy Blue’ Russian sage ranged between 3.68% and 5.10% and between 3.92% and 5.12%, respectively, and increased to ranges of 5.94% to 5.98% and 5.20% to 5.86% at 6 WAT, respectively. Before this study, no leaf tissue concentration standards have been reported; therefore, this study established leaf tissue concentration sufficiency ranges for the trialed Perovskia selections.


1998 ◽  
Vol 64 (4) ◽  
pp. 1490-1496 ◽  
Author(s):  
P. R. Jensen ◽  
K. M. Jenkins ◽  
D. Porter ◽  
W. Fenical

ABSTRACT Significantly fewer thraustochytrid protists (zoosporic fungi) were observed in association with healthy leaf tissue of the marine angiosperm Thalassia testudinum than in association with sterilized samples that were returned to the collection site for 48 h. In support of the hypothesis that sea grass secondary metabolites were responsible for these differences, extracts of healthyT. testudinum leaf tissues inhibited the growth of the co-occurring thraustochytrid Schizochytrium aggregatum and deterred the attachment of S. aggregatum motile zoospores to an extract-impregnated substrate. By using S. aggregatumfor bioassay-guided chemical fractionation, a new flavone glycoside was isolated and structurally characterized as luteolin 7-O-β-d-glucopyranosyl-2"-sulfate. Whole-leaf tissue concentrations of this metabolite (4 mg/ml of wet leaf tissue) inhibited S. aggregatum attachment, and a significantly lower concentration (270 μg/ml) reduced thraustochytrid growth by 50%, suggesting that natural concentrations are at least 15 times greater than that needed for significant microbiological effects. These results offer the first complete chemical characterization of a sea grass sulfated flavone glycoside and provide evidence that a secondary metabolite chemically defends T. testudinum against fouling microorganisms.


2007 ◽  
Vol 64 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Kipling Shane Balkcom ◽  
Charles Wesley Wood ◽  
James Fredrick Adams ◽  
Bernard Meso

Leguminous winter cover crops have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops, but the potential of summer legumes to reduce N requirements of a winter annual grass, used as a cover crop, has not been extensively examined. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent rye (Secale cereale L.) cover crop grown in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL USA during the 2003-2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67 and 101 kg ha-1) applied in the fall. Peanut residue had minimal to no effect on rye biomass yields, N content, carbon (C) /N ratio, or N, P, K, Ca and Zn uptake. Additional N increased rye biomass yield, and N, P, K, Ca, and Zn uptakes. Peanut residue does not contribute significant amounts of N to a rye cover crop grown as part of a conservation system, but retaining peanut residue on the soil surface could protect the soil from erosion early in the fall and winter before a rye cover crop grows sufficiently to protect the typically degraded southeastern USA soils.


2021 ◽  
Vol 31 (1) ◽  
pp. 45-50
Author(s):  
A. T. Omokanye ◽  
J. T. Amodu ◽  
S. O. Onifade

Forage, seed yields and herbage chemical composition of phasey bean Macroptilium lathyroides) were investigated at 3 intra-row plant spacings (15, 30 and 45cm between plants; 50 cm between roms), 4 phosphorus (P) fertilizer application rates (O), 50, 100 and 750 kg/ha P) and 5 harvest stages (uncut control, 6, 9, 12 and 15 weeks post sowing) in two growing seasons at Shika in northern Nigeria. The least intra-row plant spacing (15cm) produced higher (p<0.01) total DM vield (1.50 t/ha) than wider spacings. The proportion of leaf was least (40 %) in the widest spacing compared with other spacings (59-62 %). The P-fertilized plots produced 58-60% more total DM vields than the unfertilized plots and total DM yields increased with advanced plant growth. The highest percentage (61-63) of leaf was recorded from 6 to 12 weeks post sowing. Nitrogen level in herbage increased (p<0.05) with increased intra-row plant spacing and P application. Phosphorus and Calcium. Levels in herbage did not respond to intra-row plant spacing but increased with P application. The Ca:P ratios at the harvest stages were between 1:1 and 6:1. The highest seed yields (198 and 188 kg/ha) were recorded respectiely in the least intra-row plant spacing and the application of 100 kg Piha. Supplementation of calves on grasses/cereal stovers with phasey bean hay in a sustainable crop livestock production systems is suggested.


Sign in / Sign up

Export Citation Format

Share Document