Herbage yield, leafiness and water-soluble carbohydrate content, and silage composition and utilization in sheep of first- and second-cut Italian and Westerwolds ryegrasses (Lolium multiflorum Lam.)

1992 ◽  
Vol 72 (3) ◽  
pp. 755-762 ◽  
Author(s):  
P. Narasimhalu ◽  
H. T. Kunelius ◽  
K. B. McRae

Italian ryegrasses, cultivars Barmultra and Lemtal, and Westerwolds ryegrasses, cultivars Barspectra, Merwester and Promenade, (Lolium multiflorum Lam.) were harvested as first- and second-cut herbages and compared for yield, leafiness and water-soluble carbohydrate content during the 2-yr study. These herbages were conserved as silages and compared for chemical composition and for intake, digestibility, and total-N retention in sheep. First-cut ryegrass yielded more dry matter than second-cut ryegrass (3.3 vs. 2.6 t ha−1). First-cut ryegrass silages contained less dry matter and NDF, and sheep consumed less, but digested better and retained less total-N in comparison with second-cut ryegrass silage. Italian ryegrasses yielded less dry matter, were more leafy, contained less ADF, and were better digested compared with the Westerwolds ryegrasses. The herbage content of water-soluble-N, and the ratio of ammonium-N to total-N in silage were not different between the ryegrasses. Italian Barmultra was more leafy than Lemtal cultivar but no other significant differences were measured between these cultivars. Westerwolds Merwester yielded more dry matter, was less leafy, contained more NDF and ADF, and had lower voluntary intake, digestibility, and its total-N was less retained in sheep as compared with the Barspectra or Promenade Westerwolds ryegrass. Italian ryegrasses were superior in composition, voluntary intake, and digestibility to Westerwolds, but the latter were superior on the basis of yielding ability and efficiency of total-N utilization in sheep.Key words: Silage, ryegrass, intake, digestion, composition, Nitrogen retention

1996 ◽  
Vol 1996 ◽  
pp. 234-234
Author(s):  
D.I.H. Jones ◽  
C.P. Freeman ◽  
J.R. Newbold ◽  
A.R. Fychan ◽  
Elspeth Jones ◽  
...  

The dry matter (DM) and water soluble carbohydrate (WSC) concentrations of forage are the main characteristics influencing the course of silage fermentation. Knowledge of these parameters would enable decisions to be made both on the need for additive and the type of additive likely to be most effective. Moreover, the degree of wilt could also be followed in wilted crops. The present study was directed to assessing the relationship between the composition of the crop and the volume and composition of the expressed juice. The ultimate objective was the development of on-farm methodology for predicting the ensiling characteristics of crops.


1973 ◽  
Vol 13 (61) ◽  
pp. 165 ◽  
Author(s):  
PJ Michell

Neutral detergent fibre (NDF), acid detergent fibre (ADF) and water soluble carbohydrate (WSC) levels were determined on 80 samples of known apparent dry matter digestibility (DMD) and voluntary intake of dry matter (DMI). The pastures consisted of regrowths of six species: Trifolium repens (white clover cv. Grasslands Huia), Lolium perenne x L. multiflorum (short rotation ryegrass c.v Grasslands Manawa), Lolium perenne (long rotation ryegrass cv. Grasslands Ariki), Lolium perenne (perennial ryegrass cv. Tasmania No. I), Dactylis glomerata (cocksfoot cv. Currie) and Dactylis glomerata (cocksfoot cv. Grasslands Apanui), cut eight times between May 1969 and August 1970. Overall, white clover had a lower NDF and a lower WSC content than the ryegrasses but both groups had similar ADF contents. Cocksfoots had higher NDF and ADF, and lower WSC contents than the ryegrasses. NDF and ADF could be used to predict the DMD of all species in all seasons with residual standard deviations (RSD) of 3.0 and 3.2 DMD units (per cent) respectively. No significant relations (P < 0.05) were present between DMD and WSC content. Seasonal differences were present in the relations between DMI and chemical composition. The RSD of the overall regressions of intake with NDF, ADF, and WSC contents were 9.3, 9.4, and 8.9 DMI units (g/day/kg0.75) respectively. Within seasons, DMI was best predicted by regressions with detergent fibre content and here the RSD had a range of 3.4 to 5.2 DMI units. Within species over all seasons, DMI was predicted best by regressions with WSC content and the RSD had a range of 5.7 to 7.9 DMI units. The usefulness of the chemical composition measurements in explaining the reason for the low intakes, previously found with winter pasture, is discussed.


1996 ◽  
Vol 1996 ◽  
pp. 234-234
Author(s):  
D.I.H. Jones ◽  
C.P. Freeman ◽  
J.R. Newbold ◽  
A.R. Fychan ◽  
Elspeth Jones ◽  
...  

The dry matter (DM) and water soluble carbohydrate (WSC) concentrations of forage are the main characteristics influencing the course of silage fermentation. Knowledge of these parameters would enable decisions to be made both on the need for additive and the type of additive likely to be most effective. Moreover, the degree of wilt could also be followed in wilted crops. The present study was directed to assessing the relationship between the composition of the crop and the volume and composition of the expressed juice. The ultimate objective was the development of on-farm methodology for predicting the ensiling characteristics of crops.


1981 ◽  
Vol 61 (3) ◽  
pp. 669-680 ◽  
Author(s):  
J. G. BUCHANAN-SMITH ◽  
Y. T. YAO

A silage additive containing lactic acid bacteria was tested for its effect upon preservation of corn silage, 35–40% dry matter (DM), in four pairs of upright silos (100-t capacity). The additive did not affect (P > 0.05) final pH, lactic or acetic acid concentration, crude protein or NPN-N and NH4+-N expressed as a percent of total N. Recovery of energy from treated silage was greater than control in the two pairs of silos where this was determined, but recoveries of dry matter and crude protein were not consistently affected. Two silage additives, containing hydrolytic enzymes and an antioxidant with or without lactic acid bacteria, were tested on alfalfa, 20, 30, 36.5 and 47.3% DM, in 250-mL laboratory silos. The experimental design used a4 (DM level) × 4 (added glucose — 0,4,8 and 12%, DM basis) × 3 (additive — control, a hydrolytic enzyme/antioxidant additive (E/AO), and E/AO plus lactic acid bacteria (E/AO +)) factorial arrangement of treatments. Alfalfa was harvested using farm equipment. For 60-day silage, the additives as either a primary factor in the design or in second-order interactions with either silage DM or glucose showed no effect (P > 0.05) upon pH, lactic acid, acetic acid, butyric acid, Fleig score, residual water-soluble carbohydrate and percent of total N as NPN-N or ammonia-N. Poor quality silage resulted from the fermentation of alfalfa at 20 and 30% DM, and although additional glucose resolved this problem the additives did not. Beneficial effects of additional water-soluble carbohydrate in alfalfa silage fermentation are evident in data presented. Thus an additive containing an antioxidant and hydrolytic enzymes was not very effective and numbers of lactic acid bacteria in untreated alfalfa harvested with farm equipment must already be sufficient for adequate fermentation.


2003 ◽  
Vol 43 (2) ◽  
pp. 121 ◽  
Author(s):  
W. J. Fulkerson ◽  
K. Slack

A cut plot study was undertaken on the subtropical north coast of New South Wales, Australia, to determine the effect of defoliation height and redefoliation interval on dry matter yield and persistence of perennial ryegrass (Lolium perenne L.) pastures. The pasture was established on 7 April 1998 and plots were irrigated to replace evapotranspiration loss. The study was a completely randomised block design with plots of 2 by 1 m and treatments replicated 3 times. In winter (commencing 13 July) plots were defoliated to 20, 50 or 120 mm stubble height and either not redefoliated or redefoliated at 3, 6 or 3 and 6 days after initial defoliation. In spring (commencing 28 October) plots were redefoliated as for winter but only to 50 mm stubble height. After imposition of the redefoliation treatments, the plots were allowed to regrow until the non-redefoliated treatments had regrown 3 new leaves per tiller (subsequently referred to as a regrowth cycle) and then again defoliated (regrowth cycle 1). Plots cut in winter were then halved with one half (A plots) continuing to be subject to the redefoliation treatment for 4 more regrowth cycles until regrowth cycle 1 in spring was completed on 24 November, while the other half (B plots) were a carryover comparison of redefoliation treatment in regrowth cycle 1. Both A and B plots continued to be subjected to the same defoliation height treatments as imposed in regrowth cycle 1. From 24 November to 30 March 1999, plots were defoliated at 50 mm height each time 3 new leaves per tiller had regrown.Plots defoliated to 20 or 50 mm height during regrowth cycle 1 in winter yielded 21% more dry matter than plots cut to 120 mm height while redefoliation at 6 or 3 and at 6 days produced 14% less dry matter than plots not redefoliated or redefoliated at 3 days. Continued redefoliation at 6 days (comparison within A plots) reduced dry matter yield by 63% compared with no redefoliation or redefoliation at 3 days, but only in plots defoliated to 20 or 50 mm height.Plant density in the autumn (March 1999) of the year after establishment was positively related to defoliation height over regrowth cycles 1–5 of the previous year (35, 55 or 77 plants/m2 for plots defoliated at 20, 50 or 120�mm, respectively). Plant density of plots not redefoliated or redefoliated at 3 days over regrowth cycles 1–5 was 63% higher (70 plants/m2) than for the other treatment combination (43 plants/m2) at P = 0.07 level of significance.Plants cut to 20 or 50 mm stubble height at the commencement of regrowth cycle 1 in winter had a stubble water-soluble carbohydrate content of 5.2%, decreasing to 2.3% at day 6 post-defoliation. The water-soluble carbohydrate content of plants cut to 120 mm were initially higher at 8% and fell to only 6.4% by day 6.The redefoliation treatments imposed in this study were designed to simulate the regrazing of regrowth shoots in an extended grazing bout at various defoliation heights. The results confirm the negative effects of redefoliation, at 6 days in the winter to spring period, on both dry matter yield and plant survival over the subsequent summer in the subtropics. In contrast to winter, redefoliation in late spring had no effect on dry matter yield or plant density. The results also indicate a compromise between the benefits of more lax grazing for persistence and harder grazing for pasture utilisation.


2002 ◽  
Vol 74 (3) ◽  
pp. 587-596 ◽  
Author(s):  
M. R. F. Lee ◽  
L. J. Harris ◽  
J. M. Moorby ◽  
M. O. Humphreys ◽  
M. K. Theodorou ◽  
...  

AbstractEight Hereford ✕ Friesian steers were used to investigate the effect of feeding Lolium perenne (L) forage containing elevated levels of water-soluble carbohydrate (WSC) on rumen metabolism and nitrogen (N) absorption from the small intestine. The steers were offered ad libitum access to one of two varieties with matched heading dates (Ba11353, high WSC, HS; AberElan, intermediate WSC, control) cut at different times of the day to accentuate WSC differentials, zero-grazed for 21 days. This was followed by a 14-day period where the animals were on grass silage to provide a covariate intake. Although the total N concentration was similar for the two grasses, all other measured values were significantly different. The dry matter (DM) concentration of HS was greater than that of the control (202 v. 167 g DM per kg; P 0·01). WSC and in-vitro dry matter digestibility (IVDMD) were 243 and 161 g/kg DM, and 0·61 and 0·56 for HS and control, respectively. In contrast, acid- and neutral-detergent fibre were 251 and 296 g/kg DM and 480 and 563 g/kg DM for HS compared with control, respectively. DM intake was increased (9·3 v. 6·7 kg/day; P 0·001) for HS animals and this contributed significantly towards higher flows of non-ammonia N to the duodenum as well as increased absorption of amino acids from the small intestine. This DM intake response was partly due to the elevation in DM concentration of HS. However fresh weight intake was increased proportionately by ca. 0·15 (P 0·05) in animals on HS compared with control. Rumen ammonia levels were lower (14·0 and 26·4 mg N per l; P 0·001) and concentrations of rumen propionate higher (P 0·01) and acetate lower (P 0·01; increasing the glucogenic: lipogenic volatile fatty acid ratio) in animals on HS compared with control. However, the efficiency of microbial protein synthesis (15·9 and 17·8 g microbial nitrogen per kg organic matter apparently digested) and flow of N to the duodenum per unit N intake (0·84 and 0·93) for HS and control, respectively, were similar across both diets.


2018 ◽  
Vol 58 (6) ◽  
pp. 1043 ◽  
Author(s):  
A. Jonker ◽  
G. Molano ◽  
E. Sandoval ◽  
P. S. Taylor ◽  
C. Antwi ◽  
...  

Elevated water-soluble carbohydrate (WSC) concentration in the diet may affect rumen fermentation and consequently reduce methane (CH4) emissions. The objective of the present study was to determine CH4 emissions from male sheep (8 per treatment) in respiration chambers for 48 h and fed either a conventional diploid (CRG), a high-sugar diploid (HSG) or a tetraploid (TRG) perennial ryegrass cultivar, each offered at 0.7 or 1.0 kg dry matter (DM)/day during periods in early spring 2013 (P1), early autumn 2014 (P2) and late spring 2014 (P3). There was a significant (P < 0.001) interaction between cultivar and period for CH4 yield (g/kg DM intake). In P1 yield was 9% lower (P = 0.007) for sheep fed HSG than for sheep fed CRG or TRG, in P2 yield was 16% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG or HSG, and in P3 yield was 15% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG, with HSG-fed sheep being intermediate and not significantly different from either CRG or TRG. Despite there being a cultivar × period interaction, overall, CH4 yield was lower for sheep fed HSG or TRG than for sheep fed CRG (P < 0.001). There were no cultivar × level of feed offer interactions and, overall, yield of CH4 was 9% higher (P = 0.003) for sheep offered 0.7 than for sheep offered 1.0 kg DM/day. In each period, one or other of the high-WSC diploid (HSG) or tetraploid cultivars (TRG) gave lower CH4 yields than did the control diploid (CRG), suggesting that CH4 yield is reduced by characteristics of these cultivars. However, the effect was not consistently associated with either cultivar and could not be attributed to higher forage water-soluble carbohydrate concentrations.


Author(s):  
J R Weddell

Studies with beef cattle (Kennedy and Carson, 1991) and dairy cattle (Chamberlain et al, 1990) have shown responses in dry matter intake of silage and animal performance through applying Maxgrass silage additive to unwilted herbage ensiled in clamps. Maxgrass (BP Chemicals Ltd) contains (weight/volume) 68% ammonium hexamethanoate, 11% ammonium hexapropanoate and 2% octanoic acid.Research at Aberdeen has shown the benefits of using both inoculant (Weddell, 1990a) and formic acid based (Weddell, 1990b) additives on big bale silage which now constitutes around 15% of the total silage dry matter ensiled in the UK. The present study compared the effects on silage composition, animal performance and storage losses of Maxgrass treated with untreated big bale silage.Second cut perennial ryegrass herbage was wilted to a mean DM content of 230 g/kg then baled by fixed chamber baler. Mean water soluble carbohydrate was 100 g/kg DM. Alternate groups of six bales were left untreated or treated with Maxgrass silage additive at 7.4 1/tonne wilted grass.


Sign in / Sign up

Export Citation Format

Share Document