Effect of water-table management and nitrogen supply on yield, plant growth and water use of corn in undisturbed soil columns

1996 ◽  
Vol 76 (2) ◽  
pp. 229-235 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
J. D. Gaynor ◽  
I. van Wesenbeeck ◽  
M. Soultani

The effect of three water-table depths (30, 60 and 80 cm below the soil surface) and four N rates (0, 45, 90 and 135 kg ha−1) on plant growth, yield and water use were evaluated for corn (Zea mays L.). Research was conducted in a greenhouse, using 36 undisturbed foil columns (20 cm i.d. and 90 cm length) collected with a Meta-Drill vibrating core sampler from a Fox sandy loam soil at Harrow Research Centre. Corn grown in the 80-cm water-table depth had the greatest degree of water stress, as indicated by low volumetric soil water content, low stomatal conductance and transpiration rates, and elevated soil-surface and leaf-surface temperatures. There was a substantial increase in plant dry weight and grain yields as the N rates increased from 0 to 135 kg ha−1 with the 30- and 60-cm water-table depths. Under our experimental conditions, maximum grain yields were obtained with a 60-cm water-table depth. Grain yields were significantly reduced with the 80-cm water-table depth. With this water-table depth, grain yield was also reduced by N addition. Key words: Water-table management, Zea mays, yield, stomatal conductance, leaf temperature

2017 ◽  
Vol 14 (2) ◽  
pp. 46-55 ◽  
Author(s):  
Binny Dasila ◽  
Veer Singh ◽  
HS Kushwaha ◽  
Ajaya Srivastava ◽  
Shri Ram

Lysimeter experiment was conducted at Govind Ballabh Pant University of Agriculture & Technology, Pantnagar during summer season 2013 to study the effect of irrigation schedules and methods on yield, nutrient uptake and water use efficiency of cowpea as well as nutrient loss from silty clay loam soil under fluctuating water table conditions. The experiment was laid out in factorial randomized block design having three irrigation schedules at IW/CPE ratio of 0.3. 0.2 and 0.15 with two irrigation methods (flood and sprinkler) and at 30±1.5, 60±1.5 and 90±1.5 cm water tables replicated thrice. Maximum root length (129.4 cm) and root length density (0.395 cm/cm3) were obtained when irrigation was scheduled at IW: CPE 0.3 associated with 30±1.5 cm water table depth using sprinkler method. Increase in water table depth and IW: CPE ratio decreased water use efficiency where IW: CPE 0.3 produced highest grain yield (1411.6 kg ha-1) with the WUE of 1.15 kg ha mm-1. Significant nutrients uptake response was observed owing to variation in water table depth, irrigation schedules and methods. Analysis of lysimeter leached water showed that with deep drainage and more IW:CPE, leaching losses of N,P and K were more however water applied through sprinkler saved 20.1, 53.7 and 24.4% N, P and K, respectively, over flooded method. Irrigation given at IW: CPE 0.3 through sprinkler form at 60±1.5 cm water table depth favours the higher grain yield and nutrient uptake by crop whereas flooded irrigation with deep water table condition accelerated nutrient leaching.SAARC J. Agri., 14(2): 46-55 (2016)


2002 ◽  
Vol 12 (4) ◽  
pp. 679-681 ◽  
Author(s):  
C.D. Stanley ◽  
B.K. Harbaugh

A study was conducted to determine the effect of water table depth on water use and tuber yields for subirrigated caladium (Caladium × hortulanum) production. A field-situated drainage lysimeter system was used to control water table depths at 30, 45 and 60 cm (11.8, 17.7, and 23.6 inches). Water use was estimated by accounting for water added or removed (after rain events) to maintain the desired water table depth treatments. In 1998, tuber weights, the number of Jumbo grade tubers, and the production index (tuber value index) of `White Christmas' were greater when plants were grown with the water table maintained at 30 or 45 cm compared to 60 cm. In 1999, tuber weights, the number of Mammoth grade tubers, and the production index, also were greater when plants were grown at water table depths of 30 or 45 cm compared to 60 cm. The average estimated daily water use was 6.6, 5.1, and 3.3 mm (0.26, 0.20, and 0.13 inch) for plants grown at water table depths of 30, 45, and 60 cm, respectively, indicating an inverse relationship with water table depth. While current water management practices in the caladium industry attempt to maintain a 60-cm water table, results from this study indicate that, for subirrigated caladium tuber production, the water table should be maintained in at 30 to 45 cm for maximum production on an organic soil.


1978 ◽  
Vol 21 (4) ◽  
pp. 0723-0728 ◽  
Author(s):  
L. C. Benz ◽  
G. A. Reichman ◽  
E. J. Doering ◽  
R. F. Follett

2008 ◽  
Vol 38 (8) ◽  
pp. 2118-2127 ◽  
Author(s):  
Chelcy R. Ford ◽  
Robert J. Mitchell ◽  
Robert O. Teskey

We investigated annual aboveground net primary productivity (ANPP) and transpiration (E) of the dominant plant life forms, longleaf pine (Pinus palustris Mill.) trees and wiregrass (Aristida stricta Michx.), in a fire-maintained savanna. Experimental plots spanned a natural hydrologic gradient (xeric and mesic site types) mediated by soil moisture (θ) and water table depth (WTD), and received additions of either 0 or 100 kg N·ha–1·year–1. Low rates of ANPP (1.3–2.2 Mg·ha–1) and annual E (108–380 mm) were observed in these communities. WTD and N addition explained 95% of the variation in community ANPP, whereas site type and WTD explained 83% of variation in community E. Between tree and grass life forms, longleaf pine ANPP was more coupled to WTD than wiregrass. For any given leaf area supported, ANPP of longleaf pine increased linearly with increasing water use and decreasing WTD. The longleaf pine ANPP response to N addition was greater in sites with high water use compared with those with low water use, indicating that this savanna system is colimited by nutrient and water availability and that water table depth plays a role in regulating savanna productivity.


1983 ◽  
Vol 63 (3) ◽  
pp. 739-746 ◽  
Author(s):  
J. A. MILLETTE

Carrots and onions were grown on organic soil in a greenhouse over four water table levels, 10, 20, 40, 70 cm from the soil surface. Carrot yields were reduced over the shallowest water table level only, whereas the onion yields were depressed by the 10-, 20-, and 40-cm water table levels. The longest carrots were produced in the 40- and 70-cm water table levels. Evapotranspiration for the carrots was the same in all treatments but the water use efficiency was greatest in the 40- and 70-cm water table levels. Evapotranspiration for the onions and water use efficiency were the greatest in the 70-cm water table level. The evapotranspiration curves for the carrots showed two peaks, the second one corresponding to a rapid growth from the 50th day after seeding. The evapotranspiration curves for the onions showed one peak following the 70th day after seeding. Onions appear to be much more sensitive than carrots to high soil water content.Key words: Carrot, onion, water table, organic soil, vegetables


2017 ◽  
Vol 25 (3) ◽  
pp. 147-160
Author(s):  
Winarna Winarna ◽  
Muhammad Arif Yusuf ◽  
Suroso Rahutomo ◽  
Edy Sigit Sutarta

A field study on peat soil to investigate impacts of soil water table depth and soil ameliorant (steel sludge) had been carried out on mature oil palm. Three treatments of soil water table management and four rates of steel sludge application were applied in this study. Treatments of soil water table management were WLM1, WLM-2, and WLM-3, where soil water table depth was maintained at 35-50 cm, 60-75 cm, and >75 cm below the soil surface, respectively. Treatments of steel sludge were application of this soil ameliorant at the rate of 0; 3.15; 6.51; 9.86 kg tree-1. The study was arranged as split plot randomized block design by assigning soil water table management as main plot and rate of steel sludge as sub plot. Soil Data observed were actual soil water content, peat soil properties, CO2 emission, vegetative growth, and palm yield. The results showed that maintaining soil water table depth at < 75 cm could maintain actual soil moisture up to top parts of peat soil. On the other hand, deeper soil water table (>75 cm, WLM-3) caused significant effects on decreasing of soil moisture in the 0-10 cm layer of peat soil. CO2 emission was 37, 40, dan 45 ton ha-1 year-1 under WLM-1, WLM-2, and WLM-3, respectively. The drop of soil water table to >75 cm (WLM-3) significantly increased CO2 emission to about 11-18% higher than that on WLM-1 and WLM-2. Steel sludge application did not significantly decrease CO2 emission. The highest FFB yield was observed under WLM-1, then followed by WLM-2 and WLM-3. FFB yield was significantly higher when soil water depth was maintained at 35-75 cm than that at > 75 cm, it was 7-10% and 36-60% higher in 2014 and 2015, respectively. There were no significant effects of steel sludge application on FFB yield, but there was improvement on average bunch weight.


2020 ◽  
Author(s):  
Bärbel Tiemeyer ◽  
Sebastian Heller ◽  
Sebastian Willi Oehmke ◽  
Ullrich Dettmann

&lt;p&gt;During the last century, drainage turned the majority of the bogs and fens in Germany into productive agricultural land, causing substantial emissions of greenhouse gases (GHG). The project &amp;#8216;SWAMPS&amp;#8217; focuses both on maintaining the trafficability for conventional intensive grassland use and on the reduction of GHG emissions by managing the groundwater level by submerged drains and blocked ditches. Here, we aim to evaluate the interaction of water table management and a severe mice infestation on the emissions of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;), nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O) and methane (CH&lt;sub&gt;4&lt;/sub&gt;).&lt;/p&gt;&lt;p&gt;We set up two field sites on both fen and bog peat in North-Western Germany. Submerged drains were installed at a distance of 4 to 5 m and with a target ditch level of 45 to 50 cm below mean soil surface. On the parcels with blocked ditches, the target ditch level is adjusted at 30 to 35 cm. The control parcels are drained by ditches and/or drainage pipes. Since 2017, diurnal CO&lt;sub&gt;2&lt;/sub&gt; flux measurement campaigns have been realised once every three to four weeks with transparent and opaque chambers and a portable gas analyser. CH&lt;sub&gt;4&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O samples are taken biweekly and additionally more frequently after fertilizer application.&lt;/p&gt;&lt;p&gt;However, our experimental design was disrupted when, after an extremely dry summer and a dry and mild winter, the mice population grew strongly in 2019. We monitored both the number of mouse holes and the damage by mice. At the bog site, nearly no grass was left at the control site at the end of the year, while at the fen site, less, but still significant damage was observed. In this year, this was typical for the situation in North-Western Germany, where around 150,000 ha of grassland were severely damaged by mice. The sites with water table management were less effected by mice, but as food became scarce, they started to move into these wetter areas as well.&lt;/p&gt;&lt;p&gt;Despite higher water levels, CO&lt;sub&gt;2&lt;/sub&gt; emissions in 2019 were partially higher than in previous years, especially at those sites affected by mice. With this presentation, we would like to discuss the effects of mice damage on soil respiration and on possibilities to disentangle water management effects from this (experimental and agricultural) calamity. &amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document