Impact of tension infiltrometer disc size on measured soil water repellency index

2011 ◽  
Vol 91 (1) ◽  
pp. 77-81 ◽  
Author(s):  
A. E. Hunter ◽  
H. W. Chau ◽  
B. C. Si

Hunter, A. E., Chau, H. W. and Si, B. C. 2011. Impact of tension infiltrometer disc size on measured soil water repellency index. Can. J. Soil Sci. 91: 77–81. Accurate measurement of soil water repellency (or hydrophobicity) is important for assessing the hydraulic properties of soils. Water repellency index (RI), a measure of soil water repellency, can be determined using the tension infiltrometer. Little is known about the effects of different infiltrometer disc sizes on measured RI. Furthermore, the impact of method selection in the context of site assessment is unknown. The objective of this study was to determine if the infiltrometer disc size affects the measured RI. Studies were conducted on seven sandy and one clay site in Western Canada in 2008 and 2009. Mini (disc 4.5 cm in diameter) and standard (disc 20 cm in diameter) tension infiltrometers were used to determine RI. There was strong spatial variability in RI values at all sites. Higher RI and greater variance were associated with the smaller disc size due to the smaller zone of influence. Water repellency index values obtained from the mini and standard tension infiltrometers were not statistically different in most cases. We conclude that the mini infiltrometer is an appropriate method for site assessment of RI. The mini infiltrometer RI values were compared with those from the standard infiltrometer, resulting in a 44% accuracy rate with a type I error in 33% of the cases and a type II error in 22% of the cases.

Geoderma ◽  
2014 ◽  
Vol 221-222 ◽  
pp. 121-130 ◽  
Author(s):  
Paramsothy Jeyakumar ◽  
Karin Müller ◽  
Markus Deurer ◽  
Carlo van den Dijssel ◽  
Karen Mason ◽  
...  

2014 ◽  
Vol 2 ◽  
Author(s):  
Alexis Hernández ◽  
Natalia Rodríguez ◽  
Marcelino del Arco ◽  
Carmen Dolores Arbelo ◽  
Jesús Notario del Pino ◽  
...  

Forest fires modify the soil environment, often triggering severe soil degradation. In this paper, we studied the impact of a large northern Tenerife Canariy pine forest wildfire on a set of relevant soil properties, focusing on their evolution in time and relationship with soil water repellency. To do this, soils were sampled at four sites (burned and non-burned) and several soil physical and chemical parameters were measured. The results show significant variations for soil pH, electric conductivity (CE<sub>1:5</sub>), and NH<sub>4</sub><sup>+</sup>-N between burned and non-burned samples, whereas non-significant increases were found in burned soils for oxidizable carbon (C<sub>ox</sub>), total nitrogen (N<sub>tot</sub>) , Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>, and soil hydrophobicity. The differences caused by the fire were no longer evident one year later. Furthermore, in one sampling site (Vitric Leptosols under low pine forest with a mixed heath/beech tree understory) a wide variation in the content of C<sub>ox</sub> and N<sub>tot</sub> and high water repellency was observed relative to the other sites. These differences can be attributed to the composition of the understory vegetation. Significant correlations between soil hydrophobicity with CE<sub>1:5</sub>, aggregate stability and the contents of C<sub>ox</sub>, N<sub>tot</sub>, NH<sub>4</sub><sup>+</sup>-N, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup> were found.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Viliam Novák ◽  
Ľubomír Lichner ◽  
Bin Zhang ◽  
Karol Kňava

AbstractThe impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.


Soil Research ◽  
2005 ◽  
Vol 43 (3) ◽  
pp. 309 ◽  
Author(s):  
C. O. A. Coelho ◽  
A. Laouina ◽  
K. Regaya ◽  
A. J. D. Ferreira ◽  
T. M. M. Carvalho ◽  
...  

Forest areas of the Mediterranean regions of Portugal, Morocco, and Tunisia are suffering major land use changes, with the replacement of traditional evergreen Quercus species (i.e. Quercus suber and Quercus ilex) by fast-growing Eucalyptus species. Since Eucalyptus species are amongst those with a higher impact on soil water repellency, this study examined the effect of the replacement on soil properties, water repellency, and on soil hydrological processes and erosion rates. Measurements were performed in areas that correspond to the climatic distribution of evergreen Quercus suber: at Mação and Portel in Portugal; Ben Slimane in Morocco; and Cap Bon, Sousse, and Ain Snoussi in Tunisia. Soil superficial characteristics, including vegetation and litter cover, organic matter content, soil compaction and shear strength, and water repellency were measured for evergreen oak and Eucalyptus stands and related to soil erosion rates and soil hydrological processes. The data are based on the spatial distribution of properties assessed through the use of intensive spatial sampling and on rainfall simulations to address soil hydrological and erosional processes. The results show very different wetting patterns for some of the Eucalyptus stands during dry and moist periods, as a result of strong hydrophobic characteristics following dry spells. Nevertheless, the Eucalyptus stands in semi-arid climate show no sign of water repellency, which contradicts the theory that water repellency is purely a result of dry conditions. The experiments show no significant increases on overland flow amounts and erosion rates as direct result of soil water repellence (hydrophobicity) characteristics.


Soil Research ◽  
2018 ◽  
Vol 56 (7) ◽  
pp. 685 ◽  
Author(s):  
Kegan K. Farrick ◽  
Zakiya Akweli ◽  
Mark N. Wuddivira

Soil water repellency is a major concern in many systems as it substantially reduces infiltration and enhances surface runoff. While it is recognised that repellency is affected by the soil organic matter in natural ecosystems, the impact of manure and compost additions on the development and persistence of repellency in agroecosystems, particularly in the tropics, is poorly understood. We therefore examined the impact of different manure, compost additions and temperature on soil water repellency of tropical soils. We monitored the change in repellency in a Cambisol (Talparo – clay loam), Acrisol (Piarco – silt loam) and Arenosol (Arena – loamy sand), amended with three different manure and compost combinations at three different concentrations and four temperatures. Water repellency was the strongest among soils with higher clay content, which was likely due to the higher levels of organic matter observed in the clay loam. The cattle manure produced the most severe repellency despite having the lowest total organic carbon, whereas the sugarcane bagasse produced the lowest repellency. The increases in temperature had the strongest influence on repellency in sandy soils. Our results strongly support the findings of other studies that the quality of the organic material is more important than the total organic carbon in controlling the severity of repellency. This exploratory work also highlighted the importance of plant compost in reducing the level of repellency caused by cattle manure while still having a positive influence on the nutrient status of soils.


2021 ◽  
Vol 205 ◽  
pp. 104756
Author(s):  
Mary-Anne Lowe ◽  
Gavan McGrath ◽  
Matthias Leopold

Geoderma ◽  
2021 ◽  
Vol 402 ◽  
pp. 115264
Author(s):  
Enoch V.S. Wong ◽  
Philip R. Ward ◽  
Daniel V. Murphy ◽  
Matthias Leopold ◽  
Louise Barton

2014 ◽  
Vol 65 (3) ◽  
pp. 360-368 ◽  
Author(s):  
I. Kim ◽  
R. R. Pullanagari ◽  
M. Deurer ◽  
R. Singh ◽  
K. Y. Huh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document