Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent onin situ soil

2007 ◽  
Vol 21 (17) ◽  
pp. 2337-2345 ◽  
Author(s):  
G. Leighton-Boyce ◽  
S. H. Doerr ◽  
R. A. Shakesby ◽  
R. P. D. Walsh
Soil Research ◽  
2005 ◽  
Vol 43 (3) ◽  
pp. 337 ◽  
Author(s):  
J. J. Keizer ◽  
C. O. A. Coelho ◽  
R. A. Shakesby ◽  
C. S. P. Domingues ◽  
M. C. Malvar ◽  
...  

Soil water repellency is now known to occur in diverse soils in various parts of the world. One of the possible adverse effects of soil water repellency is that it can reduce infiltration capacity and hence, on sloping terrain, enhance overland flow and soil erosion. The main aim of the present work is to assess the effects of soil water repellency on surface runoff production in the inner coastal dune areas of central Portugal. This was done for a pine and a eucalypt forest stand and, within each stand, for 2 slopes with contrasting aspect and somewhat different slope angles. Overland flow was measured for 4 pairs of unbounded plots of about 5 m2 at fortnightly intervals from February to October 2001. Over the same period, soil water repellency at and immediately below the soil surface was measured next to the plots at monthly intervals. The runoff–repellency relationship was also studied by carrying out rainfall simulation experiments on 0.24-m2 plots and associated repellency measurements. The effect of soil water repellency was most clearly demonstrated by statistically significant higher runoff coefficients under strong-to-extremely than under none-to-slightly hydrophobic conditions immediately below the soil surface. Such a difference in runoff over the measurement period was, however, restricted to 2 unbounded plots, both of which were located on the eucalypt slope with a southerly aspect and the greater slope angle. At the scale of these plots, the increase in runoff coefficient due to soil water repellency is moderate, when integrated over the entire period of strong–extremely repellent conditions, but can be quite substantial for individual 2-weekly periods. With respect to the observed differences in runoff between plots, be it plots on the same slope or not, it has proved difficult to distinguish the effect of soil water repellency from that of other factors likely to affect overland flow generation.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 730 ◽  
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Kyoichi Otsuki ◽  
Kuniyoshi Shimizu ◽  
Atsushi Kume

Soil water repellency (SWR) is a cause of low water infiltration, overland flow and soil erosion in mountainous coniferous plantations in Japan. The factors determining SWR intensity were investigated in two coniferous plantations of Chamaecyparis obtusa (Siebold et Zucc.) Endl. and Cryptomeria japonica (L.f.) D. Don, using intact tree plots and cut tree plots on the same hillslope. The SWR of Ch. obtusa plots was stronger than that of Cr. japonica plots. SWR intensity decreased after tree cutting. There were no significant differences in SWR upslope and downslope of individual trees/stumps for both tree species, though areas downslope of individual Ch. obtusa trees had higher SWR intensity than those upslope. SWR intensity and soil aggregate stability were positively correlated in the Ch. obtusa intact tree plot (r = 0.88, p < 0.01), whereas in the cut tree plot, this correlation was weak with no significance (r = 0.29, p = 0.41). Soil aggregate size had a non-significant influence on SWR intensity. These findings suggest that SWR intensity was not related to the soil aggregate size, but SWR intensity seemed have a role in soil aggregation in the Ch. obtusa intact tree plot. Destruction of soil aggregates could occur after tree cutting because of physical disturbances or increased input of different types of organic matter from other vegetation into soil. The presence of Ch. obtusa introduces a source of SWR, although uncertainty remains about how water repellency is distributed around soil aggregates. The distribution pattern of soil water content and soil hydraulic conductivity around Cr. japonica was related to other factors such as the litter layer and non-water-repellant soil.


Biologia ◽  
2016 ◽  
Vol 71 (10) ◽  
Author(s):  
Nasrollah Sepehrnia ◽  
Mohammad Ali Hajabbasi ◽  
Majid Afyuni ◽  
Ľubomír Lichner

AbstractSoil water repellency (SWR) can affect the hydrophysical properties of soils. The objective of this study was to evaluate a new approach, which allows estimating both the extent (the modified soil water repellency index,


Geoderma ◽  
2014 ◽  
Vol 221-222 ◽  
pp. 121-130 ◽  
Author(s):  
Paramsothy Jeyakumar ◽  
Karin Müller ◽  
Markus Deurer ◽  
Carlo van den Dijssel ◽  
Karen Mason ◽  
...  

2014 ◽  
Vol 2 ◽  
Author(s):  
Alexis Hernández ◽  
Natalia Rodríguez ◽  
Marcelino del Arco ◽  
Carmen Dolores Arbelo ◽  
Jesús Notario del Pino ◽  
...  

Forest fires modify the soil environment, often triggering severe soil degradation. In this paper, we studied the impact of a large northern Tenerife Canariy pine forest wildfire on a set of relevant soil properties, focusing on their evolution in time and relationship with soil water repellency. To do this, soils were sampled at four sites (burned and non-burned) and several soil physical and chemical parameters were measured. The results show significant variations for soil pH, electric conductivity (CE<sub>1:5</sub>), and NH<sub>4</sub><sup>+</sup>-N between burned and non-burned samples, whereas non-significant increases were found in burned soils for oxidizable carbon (C<sub>ox</sub>), total nitrogen (N<sub>tot</sub>) , Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup>, and soil hydrophobicity. The differences caused by the fire were no longer evident one year later. Furthermore, in one sampling site (Vitric Leptosols under low pine forest with a mixed heath/beech tree understory) a wide variation in the content of C<sub>ox</sub> and N<sub>tot</sub> and high water repellency was observed relative to the other sites. These differences can be attributed to the composition of the understory vegetation. Significant correlations between soil hydrophobicity with CE<sub>1:5</sub>, aggregate stability and the contents of C<sub>ox</sub>, N<sub>tot</sub>, NH<sub>4</sub><sup>+</sup>-N, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and K<sup>+</sup> were found.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Viliam Novák ◽  
Ľubomír Lichner ◽  
Bin Zhang ◽  
Karol Kňava

AbstractThe impact of heating on the peristence of water repellency, saturated hydraulic conductivity, and water retention characteristics was examined on soils from both forest and meadow sites in southwest Slovakia shortly after a wet spell. The top 5 cm of meadow soils had an initial water drop penetration time WDPT at 20°C of 457 s, whereas WDPT in the pine forest was 315 s for the top 5 cm and 982 s if only the top 1 cm was measured. Heating soils at selected temperatures of 50, 100, 150, 200, 250 and 300°C caused a marked drop in water drop penetration time WDPT from the initial value at 20°C. However, samples collected in different years and following an imposed cycle of wetting and drying showed much different trends, with WDPT sometimes initially increasing with temperature, followed by a drop after 200–300°C. The impact of heating temperature on the saturated hydraulic conductivity of soil was small. It was found for both the drying and wetting branches of soil water retention curves that an increase in soil water repellency resulted in a drop in soil water content at the same matric potential. The persistence of soil water repellency was strongly influenced by both the sampling site and time of sampling, as it was characterized by the results of WDPT tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2577
Author(s):  
Enzhan Song ◽  
Keith W. Goyne ◽  
Robert J. Kremer ◽  
Stephen H. Anderson ◽  
Xi Xiong

Repeated application of soil surfactants, or wetting agents, is a common practice for alleviating soil water repellency associated with soil organic coatings. However, wetting agents are organic compounds that may also coat soil particle surfaces and reduce wettability. For this experiment, hydrophobic sands from the field and fresh, wettable sands were collected and treated with either a polyoxyalkylene polymer (PoAP) or alkyl block polymer (ABP) wetting agent, or water only treatments served as a control. Following repeated treatment application and sequential washings, dissolved and particulate organic carbon (OC) were detected in the leachates of both sand systems. The total amount of OC recovered in leachates was 88% or less than the OC introduced by the wetting agents, indicating sorption of wetting agent monomers to soil particle surfaces regardless of soil hydrophobicity status. While ABP treatment did not alter solid phase organic carbon (SOC) in the sands studied, PoAP application increased SOC by 16% and 45% which was visible in scanning electronic microscopy images, for hydrophobic and wettable sands, respectively. PoAP application also increased the hydrophobicity of both sands that were studied. In contrast, ABP treatment increased the wettability of hydrophobic sand. Our results provide strong evidence that certain wetting agents may increase soil hydrophobicity and exacerbate wettability challenges if used repeatedly over time.


2020 ◽  
Vol 29 (11) ◽  
pp. 1009 ◽  
Author(s):  
Jingjing Chen ◽  
Luke A. Pangle ◽  
John P. Gannon ◽  
Ryan D. Stewart

It is not well understood if wildfires induce soil water repellency in broadleaf deciduous forests, such as those endemic to the Blue Ridge Mountains of the eastern United States. In 2016, widespread wildfires provided an opportunity to study soil water repellency in this region. We selected sites in four locations with low to moderate burn severities, along with unburned controls. We estimated soil water repellency using water drop penetration time measurements from the surface (i.e. ash or organic) layer to ~5cm within the underlying mineral layer. Two months after the fires, water repellency was detected in all locations and was greater in more severely burned sites. One location had the greatest water repellency in surface ash (frequency of occurrence: 68–74%), whereas the other locations showed greatest repellency at the ash–mineral interface (40–96%). Unburned soils rarely showed repellency (0–18%). Burned soils also exhibited water repellency 1 year post fire. The study results suggest that combustion of non-resinous foliage within litter layers can cause water repellency in deciduous forests, meaning that this condition is not exclusive to coniferous and dryland forests. The duration of impact depends on fire severity, and may enhance overland flow and sediment transport in affected landscapes.


2019 ◽  
Vol 11 (16) ◽  
pp. 4505 ◽  
Author(s):  
Enzhan Song ◽  
Xiaowei Pan ◽  
Robert J. Kremer ◽  
Keith W. Goyne ◽  
Stephen H. Anderson ◽  
...  

Wetting agents are the primary tool used to control soil water repellency (SWR) and localized dry spot (LDS), especially on sand-based soils. However, the effect of repeated applications of wetting agents on soil microbial populations is unknown. This two-year field experiment investigated six wetting agents representing different chemistry effects on a creeping bentgrass (Agrostis stolonifera L.) putting green with existing SWR. Four out of the six wetting agents improved soil volumetric water content in the second growing season, while others showed no effect. This result was negatively correlated to the development of LDS, and positively correlated to occurrence of an air-borne turf disease. Soil microbial populations, determined by soil phospholipid fatty acid (PLFA) analysis, found that none of the treatments applied caused a shift in microbial populations between fungi and bacteria, or gram-positive and gram-negative bacteria. The stress indicators such as saturated to mono-unsaturated fatty acids were not affected by the wetting agents applied as well. However, the wetting agent that contains alkyl block polymers (ABP; Matador) with proven capability for removal of soil organic coatings showed inhibition of microbial populations at one evaluation timing. This result suggested a temporary restriction in soil carbon availability for soil microorganisms following repeated ABP application, which likely contributed to the elevated LDS development observed. Another wetting agent, a combined product of a nonionic surfactant plus acidifiers (NIS; pHAcid), which is designed to reduce inorganic carbonates while enhancing wetting, elevated all soil microbial populations tested at the end of the experiment, indicating a desirable improvement in soil health. However, repeated application of NIS did not reduce SWR at the conclusion of this experiment, which, in combination with a previous report, suggested a minimal disturbance of soil organic coatings of the hydrophobic sand. Overall, this experiment suggested that soil microbial populations can be affected by wetting agents which may further influence SWR, yet the actual effect on soil microorganisms varies depending on the chemistry of the wetting agents.


Sign in / Sign up

Export Citation Format

Share Document