scholarly journals THE EVALUATION OF THE RESIDUAL EFFECT OF FERTILIZER IN LONG-TERM FERTILITY PLOTS: I. POTASSIUM

1963 ◽  
Vol 43 (2) ◽  
pp. 229-234 ◽  
Author(s):  
A. A. MacLean ◽  
J. J. Doyle

Residual effects of long-term annual applications of fertilizer potassium on the potassium status of an acid sandy loam Podzol were investigated, in a greenhouse experiment. Potassium accumulated in the surface soil in a form readily available to plants.On plots with higher cation exchange capacities, resulting from manurial treatments, there was no evidence to indicate leaching below 15 inches. On plots where cation exchange capacity was not increased by treatment, a higher percentage potassium saturation at greater depths indicates that leaching of potassium had occurred to a depth of 21 inches. An increased concentration of nitric acid-soluble potassium at greater depths suggests that some of the leached potassium has been converted to the non-exchangeable form.Accumulation in the surface soil was sufficient to supply most of the potassium requirement of ladino clover under conditions of intensive cropping. The results suggest that exchangeable and nitric acid-soluble potassium are reliable criteria of available potassium.

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S. Czarnecki ◽  
R.-A. Düring

Abstract. Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.


1960 ◽  
Vol 40 (2) ◽  
pp. 136-145 ◽  
Author(s):  
L. B. MacLeod ◽  
R. F. Bishop ◽  
L. P. Jackson ◽  
C. R. MacEachern ◽  
E. T. Goring

In a field experiment, conducted from 1936 to 1957, a rotation of swedes, oats and hay was followed and treatments included commercial fertilizers and manure.Changes in the chemical composition of the soil during the experiment included significant decreases in soil organic matter, total nitrogen and cation exchange capacity. In no case was the initial content of exchangeable potassium maintained and although changes in adsorbed and easily acid-soluble phosphorus were negligible with a number of treatments only one resulted in a significant increase.The treatments were applied in the swede year and yield differences with this crop were greater than for either the oats or hay. Data for the latter two crops indicated that with most of the treatments there was a tendency for yields to decline as the experiment progressed. This was not the case with swedes where variation in yields with rotation cycles was greater than it was in the case of oats or hay. There was a considerable residual effect from manure, and phosphorus had a greater effect on yields than either nitrogen or potassium.


2021 ◽  
Vol 70 (1) ◽  
pp. 13-26
Author(s):  
Miodrag Tolimir ◽  
Branka Kresović ◽  
Borivoj Pejić ◽  
Katarina Gajić ◽  
Angelina Tapanarova ◽  
...  

The impact of long-term (> 100 yr) irrigation on soil chemical properties was studied on eight plots in the Beli Drim river valley in Kosovo and Metohija near Klina, Serbia. For these studies, soil samples from shallow profiles were collected from only one or two depth zones of the Ah horizon; and from moderately deep and deep profiles, from two to three depth zones for the purpose of comparing irrigated field and non-irrigated meadow lands. Water from the Beli Drim River and surface gravity systems (irrigation furrows or border strip irrigation) were used for irrigation. Chemical variables included determination of pH-H2O, content of CaCO3, content of humus, hydrolytic acidity, sum of basic cations, cation exchange capacity, and base saturation. On irrigated soils, the results of chemical analysis showed on average a small increase in pH-H2O (0.07 pH units), as well as a significant decrease in humus content (2.00-4.75%), sum of basic cations (4.98-12.98%) and cation exchange capacity (12.8%) compared to the non-irrigated land of the study area. Long-term irrigation had no effect on hydrolytic acidity and base saturation in the Ah horizon of the investigated lands. Namely, the mentioned variations in the chemical properties of the investigated soils show that slight processes of reduction in the humus content and reduction of the content of base cations occured. Data on the chemical properties of the investigated soils indicate that the destructive processes of reduction in the humus content and leaching of base cations must be controlled in order to achieve a stable sustainable system of high productivity and prevent their further deterioration.


1961 ◽  
Vol 12 (2) ◽  
pp. 273 ◽  
Author(s):  
JS Russell

Changes in the cation exchange complex are one of the secondary effects arising out of the increasing organic matter content of soils, due to the influence of phosphorus fertilizers on leguminous pastures. Analysis of solonetzic soils from the long-term Kybybolite P plots indicates that there is a close relation between organic matter increase and increases in cation exchange capacity. For each increase of 0.1 % soil nitrogen, there has been a corresponding increase of 3.48 m-equiv.jl00 g in cation exchange capacity. Associated with these changes there have been increases in the level of exchangeable calcium and exchangeable hydrogen. Changes in exchangeable calcium appear related to the amount and form of fertilizer or amendment applied. Where little calcium has been added, the increase in cation exchange capacity has been satisfied almost entirely by hydrogen, and base saturation has decreased. There appears to have been little upward movement of metal cations from the lower horizons to the surface by plants, possibly owing to the species involved, or to the intractable nature of the B horizon. The possible effects of changes in the cation exchange complex on plant growth are discussed. Also, the possibility of maintaining base saturation on infertile soils where cation exchange capacity is being increased, is examined.


Author(s):  
Antonio Carlos Saraiva da Costa ◽  
Ivan Granemann de Souza ◽  
Leila Cristina Canton ◽  
Luciano Grillo Gil ◽  
Rodolfo Figueiredo

Soil Research ◽  
2005 ◽  
Vol 43 (7) ◽  
pp. 839 ◽  
Author(s):  
P. Chandran ◽  
S. K. Ray ◽  
T. Bhattacharyya ◽  
P. Srivastava ◽  
P. Krishnan ◽  
...  

In this study, we report the chemical and mineralogical characteristics of 4 benchmark Ultisols of Kerala to elucidate their genesis and taxonomy. The taxonomic rationale of the mineralogy class of Ultisols and other highly weathered soils on the basis of the contemporary pedogenesis is also explained. The Ultisols of Kerala have low pH, low cation exchange capacity, low effective cation exchange capacity and base saturation, with dominant presence of 1 : 1 clays and gibbsite. Presence of gibbsite along with 2 : 1 minerals discounts the hypothesis of anti-gibbsite effect. Since the kaolins are interstratified with hydroxy-interlayered vermiculites (HIV), the formation of gibbsite from kaolinite is not tenable. Thus, gibbsite is formed from primary minerals in an earlier alkaline pedo-environment. Therefore, the presence of gibbsite does not necessarily indicate an advanced stage of weathering. On the basis of a dominant amount of gibbsite, a mineralogy class such as allitic or gibbsitic does not establish a legacy between the contemporary pedogenesis and the mineralogy. The dominance of kaolin–HIV in the fine clays of Ultisols and their persistence, possibly since early Tertiary, suggests that ‘steady state’ may exist in soils developed on long-term weathered saprolite. Since the present acid environment of Ultisols does not allow desilication, the chemical transformation of Ultisols to Oxisols with time is difficult to reconcile as envisaged in the traditional model of tropical soil genesis.


1992 ◽  
Vol 28 (4) ◽  
pp. 417-424 ◽  
Author(s):  
Charles F. Yamoah ◽  
J. R. Burleigh ◽  
V. J. Eylands

SUMMARYSustainable crop production on Rwandan oxisols is limited by widespread soil acidity caused by high levels of exchangeable aluminium. This study was designed to test the effectiveness of an indigenous lime material in counteracting the acidity and enhancing crop yields. Lime application significantly raised pH, exchangeable calcium and effective cation exchange capacity, and reduced exchangeable aluminium and total acidity. Calcium was directly proportional to effective cation exchange capacity (r = 0.962**) and was inversely related to aluminium (r = −0.955**). Consequently, yields of wheat, beans and potatoes, which served as test crops, were significantly increased by liming. Lime at high rates (4–8 t ha−1) had a longer residual effect than at low rates (less than 2 t ha−1), suggesting frequent applications are needed when low lime rates are used. Simple regression analysis showed an increase in pH of 0.154 units and a decrease in exchangeable aluminium of 0.385 meq 100 g−1 for a tonne of lime applied.


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 377 ◽  
Author(s):  
D. Curtin ◽  
P. M. Fraser ◽  
M. H. Beare

Cultivation of grassland is known to lead to the depletion of soil organic matter (SOM), but the effect on the size and composition of the exchangeable cation suite has not been documented. We measured cation exchange capacity (CEC) and exchangeable cations (calcium, Ca; magnesium, Mg; potassium, K; sodium, Na), as well as soil carbon (C) and nitrogen (N) (0–7.5, 7.5–15, and 15–25 cm), 8 years after conversion of long-term ryegrass–white clover pasture (grazed by sheep) to annual crop production. The trial was near Lincoln, Canterbury, New Zealand. The trial included three tillage treatments: crops established using intensive cultivation (mouldboard ploughing), minimum tillage (shallow cultivation, ~10 cm), or no-tillage. The 8-year rotation was barley, wheat, pea, barley, pea, barley, barley, barley. A sheep-grazed pasture was maintained as an experimental control. The experiment also included a permanent fallow treatment (maintained plant-free using herbicides; not cultivated). After 8 years under arable cropping, soil C stocks (0–25 cm) were 10 t ha–1 less, on average, than under pasture. The vertical distribution of soil organic matter (SOM) was affected by tillage type, but the total amount of organic matter in the top 25 cm did not differ (P > 0.05) among the tillage treatments. Under permanent fallow (C loss of 13 t ha–1 relative to pasture), total exchangeable cation (Ca + Mg + K +Na) equivalents declined by 47 kmolc ha–1, a 20% decrease compared with pasture. Loss of exchange capacity resulted in the selective release of cations with lower affinity for SOM (K, Na, Mg). Smaller losses of exchangeable cations were recorded under the arable cropping rotation (average 31 kmolc ha–1), with no differences among tillage treatments. Effective CEC (at field pH) decreased under permanent fallow and cultivated treatments because of: (1) depletion of SOM (direct effect); and (2) soil acidification, which eliminated some of the remaining exchange sites (indirect effect). Acidification in the permanent fallow can be attributed to the N mineralisation process, whereas in the cropped systems, excess cation removal in harvested straw and grain accounted for about half of the measured acidification. There was evidence that the organic matter lost under arable cropping and fallow had lower CEC than SOM as a whole.


Sign in / Sign up

Export Citation Format

Share Document