scholarly journals Chemical properties of long-term irrigated Fluvisols of the Beli Drim river valley in the Klina region (Serbia)

2021 ◽  
Vol 70 (1) ◽  
pp. 13-26
Author(s):  
Miodrag Tolimir ◽  
Branka Kresović ◽  
Borivoj Pejić ◽  
Katarina Gajić ◽  
Angelina Tapanarova ◽  
...  

The impact of long-term (> 100 yr) irrigation on soil chemical properties was studied on eight plots in the Beli Drim river valley in Kosovo and Metohija near Klina, Serbia. For these studies, soil samples from shallow profiles were collected from only one or two depth zones of the Ah horizon; and from moderately deep and deep profiles, from two to three depth zones for the purpose of comparing irrigated field and non-irrigated meadow lands. Water from the Beli Drim River and surface gravity systems (irrigation furrows or border strip irrigation) were used for irrigation. Chemical variables included determination of pH-H2O, content of CaCO3, content of humus, hydrolytic acidity, sum of basic cations, cation exchange capacity, and base saturation. On irrigated soils, the results of chemical analysis showed on average a small increase in pH-H2O (0.07 pH units), as well as a significant decrease in humus content (2.00-4.75%), sum of basic cations (4.98-12.98%) and cation exchange capacity (12.8%) compared to the non-irrigated land of the study area. Long-term irrigation had no effect on hydrolytic acidity and base saturation in the Ah horizon of the investigated lands. Namely, the mentioned variations in the chemical properties of the investigated soils show that slight processes of reduction in the humus content and reduction of the content of base cations occured. Data on the chemical properties of the investigated soils indicate that the destructive processes of reduction in the humus content and leaching of base cations must be controlled in order to achieve a stable sustainable system of high productivity and prevent their further deterioration.

1961 ◽  
Vol 12 (2) ◽  
pp. 273 ◽  
Author(s):  
JS Russell

Changes in the cation exchange complex are one of the secondary effects arising out of the increasing organic matter content of soils, due to the influence of phosphorus fertilizers on leguminous pastures. Analysis of solonetzic soils from the long-term Kybybolite P plots indicates that there is a close relation between organic matter increase and increases in cation exchange capacity. For each increase of 0.1 % soil nitrogen, there has been a corresponding increase of 3.48 m-equiv.jl00 g in cation exchange capacity. Associated with these changes there have been increases in the level of exchangeable calcium and exchangeable hydrogen. Changes in exchangeable calcium appear related to the amount and form of fertilizer or amendment applied. Where little calcium has been added, the increase in cation exchange capacity has been satisfied almost entirely by hydrogen, and base saturation has decreased. There appears to have been little upward movement of metal cations from the lower horizons to the surface by plants, possibly owing to the species involved, or to the intractable nature of the B horizon. The possible effects of changes in the cation exchange complex on plant growth are discussed. Also, the possibility of maintaining base saturation on infertile soils where cation exchange capacity is being increased, is examined.


2020 ◽  
Author(s):  
А.В. Сафонов ◽  
Е.Н. Кузин ◽  
А.Н. Арефьев ◽  
Е.Е. Кузина

Интенсификация земледелия в лесостепной зоне Среднего Поволжья требует решения проблемы сохранения почвенного покрова и его потенциального и эффективного плодородия с целью повышения урожайности сельскохозяйственных культур и качества растениеводческой продукции. В связи с этим разработка и внедрение в земледельческую практику агробиологических приемов предотвращения антропогенной деградации в агроландшафтах является актуальным направлением современной аграрной науки. Цель исследований заключалась в сравнительной оценке влияния навоза, сидератов и их сочетаний с биодеструктором стерни на физико-химические свойства лугово-черноземной почвы. Для достижения поставленной цели были проведены исследования в период с 2017 по 2019 гг. в первом агропочвенном районе Пензенской области. Исследованиями установлено, что действие и последействие навоза, сидератов и их комплексное действие и последействие с биодеструктором стерни оказало положительное влияние на физико-химические свойства лугово-черноземной почвы. Сидеральные пары по эффективности влияния на емкость катионного обмена, сумму обменных оснований, величину обменной и гидролитической кислотности не уступали унавоженным парам. Более существенное влияние на изменение физико-химических свойств почвы оказало комплексное действие и последействие навоза, редьки масличной и бобовых сидератов с биодеструктором стерни. Емкость катионного обмена на их фоне увеличилась на 1,40-1,51 мг-экв./100 г почвы, сумма обменных оснований на 1,6-1,7 мг-экв./100 г почвы, величина рНсолна 0,22-0,24 ед., величина гидролитической кислотности снизилась на 0,17-0,19 мг-экв./100 г почвы. Intensification of agriculture in the forest-steppe zone of the Middle Volga region requires solving the problem of preserving the soil and its potential and effective fertility in order to increase crop productivity and quality of crop production. In this regard, the development and implementation in agricultural practice of agrobiological techniques to prevent anthropogenic degradation in agricultural landscapes is an urgent direction of modern agricultural science. The purpose of the research was to compare the effect of the implementation of manure, green manure and their combinations with the stover biodestructor on the physical and chemical properties of meadow-chernozemic soil. To reach this purpose, research was conducted in the period from 2017 to 2019 in the first agro-soil district of the Penza region. Research has shown that the effect and after-effect of manure, green manure and their compound action and after-action with the stover biodestructor had a positive effect on the physical and chemical properties of meadow-chernozemic soil. Green manure fallows were not inferior to manured fallows in terms of their effect on the cation-exchange capacity, the sum of exchange bases, and the amount of exchange and hydrolytic acidity. A compound action and after-action of manure, the oil radish and green manure of legumes with the stover biodestructor had a more significant influence on the change in the physical and chemical properties of the soil. In their background, the cation-exchange capacity increased by 1.40-1.51 mg equivalent/100 g of soil, the sum of exchange bases by 1.6-1.7 mg equivalent/100 g of soil, the value of рНКСl 0.22-0.24 units, the value of hydrolytic acidity decreased by 0.17-0.19 mg equivalent/100 g of soil.


2016 ◽  
Vol 27 (1) ◽  
pp. 22-25 ◽  
Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski

AbstractThe aim of the study was to determine the influence of increasing cobalt soil contamination (0 mg·kg−1, 20 mg·kg−1, 40 mg·kg−1, 80 mg·kg−1, 160 mg·kg−1, 320 mg·kg−1) after the application of neutralising substances on selected soil properties. In the soil without an addition of neutralising substances, the highest doses of cobalt caused the pH, total exchangeable bases, cation exchange capacity and the degree of base saturation to decrease and the hydrolytic acidity of soil to increase. Among the substances used, zeolite and calcium oxide (particularly) had the most advantageous influence on the analysed soil properties. They caused the pH, total exchangeable bases and cation exchange capacity to increase and the hydrolytic acidity to decrease. Among the other substances, it was charcoal that had the greatest influence on the soil properties, but the way it influenced the total exchangeable bases, the cation exchange capacity of soil and the degree of base saturation were opposite to the way calcium oxide influenced these properties.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 23-33 ◽  
Author(s):  
S. Czarnecki ◽  
R.-A. Düring

Abstract. Essential and non-essential metals occur in soils as a result of weathering, industrial processes, fertilization, and atmospheric deposition. Badly adapted cultivation of agricultural soils (declining pH value, application of unsuitable fertilizers) can enhance the mobility of metals and thereby increase their concentrations in agricultural products. As the enrichment of metals in soils occurs over long time periods, monitoring of the long-term impact of fertilization is necessary to assess metal accumulation in agricultural soils. The main objective of this study was to test the effects of different mineral fertilizer variations on soil properties (pH, Corg, and cation exchange capacity (CEC)) and pseudo-total and mobile metal contents of soils after 14 years of fertilizer application and to determine residual effects of the fertilization 8 years after cessation of fertilizer treatment. Soil samples were taken from a field experiment which was carried out at four different locations (210, 260, 360, and 620 m above sea level) in Hesse, Germany. During the study, a significant decrease in soil pH and an evident increase in soil carbon content and cation exchange capacity with fertilization were determined. The CEC of the soils was closely related to their organic C contents. Moreover, pseudo- and mobile metal (Cd, Cu, Mn, Pb, Zn) contents in the soils increased due to application of 14 years of mineral fertilizer treatments (N, P, NP, and NPK) when compared to control plots. Eight years after termination of the fertilization in the soil samples taken from soil profiles of the fertilized plots (NPK) for monitoring the residual effects of the fertilizer application, a decrease of 82.6, 54.2, 48.5, 74.4, and 56.9% in pseudo-total Cd, Cu, Mn, Pb, and Zn contents, respectively, was determined.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


2006 ◽  
Vol 63 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Diogo Mazza Barbieri

Soils with small variations in relief and under the same management system present differentiated spatial variabilities of their attributes. This variability is a function of soil position in the landscape, even if the relief has little expression. The aim of this work was to investigate the effects of relief shape and depth on spatial variability of soil chemical attributes in a Typic Hapludox cultivated with sugar cane at two landscape compartments. Soil samples were collected in the intercrossing points of a grid, in the traffic line, at 0-0.2 m and 0.6-0.8 m depths, comprising a set of 100 georeferenced points. The spatial variabilities of pH, P, K, Ca, Mg, cation exchange capacity and base saturation were quantified. Small relief shape variations lead to differentiated variability in soil chemical attributes as indicated by the dependence on pedoform found for chemical attributes at both 0-0.2 m and 0.6-0.8 m depths. Because of the higher variability, it is advisable to collect large number of samples in areas with concave and convex shapes. Combining relief shapes and geostatistics allows the determination of areas with different spatial variability for soil chemical attributes.


Author(s):  
Resman ◽  
Sahta Ginting ◽  
Muhammad Tufaila ◽  
Fransiscus Suramas Rembon ◽  
Halim

The research aimed to determine the effectiveness of compost containing humic and fulvic acids, and pure humic and fulvic acids in increasing of Ultisol soil chemical properties. The research design used a randomized block design (RBD), consisting of 10 treatments, namely K0: 0 g polybag-1, KO1: 500 g polybag-1, KO2: 500 g polybag-1, KO3: 500 g polybag-1, KO4: 500 g polybag-1, KO5: 500 g polybag-1, KO6: 500 g polybag-1, KO7: 500 g of polybags-1, H: 50 g of polybag-1, A: 500 g polybag-1. Each treatment was repeated three times and obtained 30 treatment units. The results showed that pH H2O (K0: 4.49, KO1: 5.64, KO2: 5.47, KO3: 5.43, KO4: 5.51, KO5: 5.39, KO6: 5.48, KO7: 6.17, H: 5.06, F: 5.15), total-N (%) (K0: 0.13, KO1: 0.17, KO2: 0.18, KO3: 0.30, KO4: 0.25, KO5: 0.24, KO6: 0.29, KO7: 0.36, H: 0.16, F: 0.14), organic-C (%) (K0: 1.85, KO1; 2.30, KO2: 2.24, KO3: 2.33, KO4: 2.62, KO5: 2.25, KO6: 2.27, KO7: 2.95, H: 2.32, F: 2.26) , available-P (%) (K0: 2.75, KO1: 3.24, KO2: 3.16, KO3: 3.27, KO4: 3.57, KO5: 3.31, KO6: 3.37, KO7: 3.89, H: 3.10, F: 3.12), exchangeable-Al (me100g-1) (K0: 2.51, KO1: 2.11, KO2: 2.13, KO3: 2.15, KO4: 1.88, KO5: 2.14, KO6: 2.12, KO7: 1.75, H: 2.16, F: 2.17), base saturation (%) (K0: 30.91, KO1: 63.48, KO2: 52.63, KO3: 53.76, KO4: 56.13, KO5: 54.96, KO6: 56.71, KO7: 65.53, H: 39.11, F: 42.76), cation exchange capacity (me100g-1) (K0: 12.76, KO1: 15.64, KO2: 14.86, KO3: 14.35, KO4: 14.13, KO5: 15.01, KO6: 15.50, KO7: 17.94, H: 14.19, F: 13.73). The combined compost treatment of three types of organic matter (Imperata cylindrica + Rice straw + Glincidia sepium) is more effective in increasing the pH, H2O as 37.42%, total-N as 176.92%, Organic-C as 59.46%, available-P as 41.45%, base saturation as 65.53%, cation exchange capacity as 17.94% and exchangeable -Al, Alreduction as 30.28% of ultisol soil. KEY WORDS: compost, humic acid, fulvate, soil chemical, ultisol


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Janet F.M. Rippy ◽  
Paul V. Nelson

Variations in moss peat cation exchange capacity (CEC) and base saturation (BS) can result in inconsistent initial pH in moss peat-based substrates created using standard formulas for limestone additions and can lead to subsequent drift from the initial pH in those substrates. This study was conducted to determine the extent of such variation. CEC and BS were measured in three replications on 64 moss peat samples that were selected from three mires across Alberta, Canada, to represent maximum gradients in plant species composition within six degrees of decomposition acceptable for professional peat-based substrates. CEC ranged from 108 to 162 cmol·kg−1 (meq·100 g). Averaged overall samples, BS ranged from 15% to 71% of CEC and calcium accounted for 68%, magnesium for 25%, sodium for 5%, and potassium for 1.4% of BS. CEC was positively correlated to the amount of Sphagnum fuscum (Schimp.) Klingrr. in the sample (r = 0.22). BS was positively correlated to the amount of sedge (r = 0.28). Neither CEC nor BS was influenced by degree of decomposition (r = 0.002 and r = 0.08, respectively). Moss peats with high CEC have a greater buffering capacity than those with low CEC, resulting in less pH drift. Moss peats with high BS should have a low neutralization requirement to achieve a target pH. Understanding the species composition in peat-based substrates can alleviate problems of inconsistent initial pH and subsequent pH drift.


Sign in / Sign up

Export Citation Format

Share Document