The Biology of Invasive Alien Plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif

2005 ◽  
Vol 85 (2) ◽  
pp. 507-522 ◽  
Author(s):  
Mihai Costea ◽  
Susan E Weaver ◽  
François J. Tardif

This annual dioecious weed was found in 2002 and 2003 infesting soybean fields in southwestern Ontario, and it was collected in 1992 from waste places in British Columbia. It is a major weed problem in field crops in the mid-western United States, where it has become increasingly difficult to control during the past 10 yr. Morphological differences between Amaranthus tuberculatus var. rudis and var. tuberculatus are presented. A review of the biological information published is provided. Plants exhibit high phenotypic plasticity and genetic variability. Emergence is prolonged, growth rapid, and female plants produce a large number of viable seeds that contribute to a persistent seed bank. Amaranthus tuberculatus var. rudis has developed multiple resistance to triazine and acetolactate synthase- and protoporphyrinogen-inhibiting herbicides. Airborne pollen can travel significant distances and A. tuberculatus var. rudis may hybridize with other noxious Amaranthus spp. transferring herbicide resistance or other traits. Key words: Amaranthus tuberculatus var. rudis, AMATA, Amaranthus rudis, common waterhemp, weed biology, invasive alien

2004 ◽  
Vol 84 (2) ◽  
pp. 631-668 ◽  
Author(s):  
M. Costea ◽  
S. E. Weaver ◽  
F. J. Tardif

A review of the biological information published after 1980 is provided for three species of the genus Amaranthus: A. retroflexus L., A. powellii S. Watson and A. hybridus L. The three species are noxious weeds introduced to Canada from southern North America. Their geographical distribution has remained almost unchanged since the original paper published in 1980. The plants exhibit a high phenotypic plasticity and genetic variability and they easily adapt to a multitude of agrestal and ruderal habitats. The seeds contribute to a persistent seed bank; they exhibit a variable dormancy and polymorph germination as a result of maternal, genetic and environmental factors. Growth is rapid and plants produce a large number of viable seeds. The three species have developed multiple resistance to triazine and acetolactate-synthase-inhibiting herbicides. They are alternate hosts to many insects, nematodes, viruses, bacteria and fungi that affect cultivated plants. Key words: Amaranthus retroflexus, Amaranthus powellii, Amaranthus hybridus, weed biology, ecology, taxonomy, herbicide resistance


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 789-794 ◽  
Author(s):  
Sarah Taylor Lovell ◽  
Loyd M. Wax ◽  
Michael J. Horak ◽  
Dallas E. Peterson

The incidence of weed resistance to acetolactate synthase (ALS) inhibiting herbicides has increased in the United States. In 1993, a population of ALS-resistant common waterhemp was discovered after two confirmed applications of an imidazolinone herbicide. Following another imazethapyr application in the glasshouse, the resistant biotype demonstrated 130-fold resistance to imazethapyr at the whole plant level. The concentration of imazethapyr required to inhibit the ALS activity by 50% was 520 times greater for the resistant biotype than the susceptible. Plants also demonstrated cross-resistance to the sulfonylureas, chlorimuron and thifensulfuron, at the whole plant and enzyme levels. This particular discovery is of concern due to the low number of applications of the selection agent (imazaquin 1989, imazethapyr 1992, and imazethapyr in the greenhouse) and the high degree of cross-resistance eliminating several options for weed control.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 469-477 ◽  
Author(s):  
Loretta M. Ortiz-Ribbing ◽  
Kenny R. Glassman ◽  
Gordon K. Roskamp ◽  
Steven G. Hallett

Common waterhemp (Amaranthus rudis) and pigweeds (Amaranthus spp.) are troublesome weeds in many cropping systems and have evolved resistance to several herbicides. Field trials to further develop Microsphaeropsis amaranthi and Phomopsis amaranthicola as bioherbicides for control of waterhemp and pigweeds were conducted to test the effectiveness of these organisms in irrigated and nonirrigated pumpkin and soybean plots over 2 years at three locations in western Illinois. The bioherbicide was applied with lecithin and vegetable oil at 187 liters ha–1 in 2008 and 374 liters ha–1 in 2009. Treatments included spore suspensions of M. amaranthi and P. amaranthicola alone, a mixture of both organisms, and sequential treatments of the organisms with halosulfuron-methyl (Sandea Herbicide) in pumpkin or glyphosate (Roundup Original Max Herbicide) in soybean. Bioherbicide effectiveness was estimated at approximately 7 and 14 days after treatment, as disease incidence, disease severity, percent weed control, and weed biomass reduction. Significant reductions in weed biomass occurred in treatments with one or both of the fungal organisms, and potential exists to tank mix M. amaranthi with halosulfuron-methyl. Leaf surface moisture and air temperatures following application may account for inconsistencies in field results between year and locations. These fungal organisms show potential as bioherbicides for weeds in the genus Amaranthus.


1997 ◽  
Vol 11 (1) ◽  
pp. 13-18 ◽  
Author(s):  
John R. R. Hinz ◽  
Micheal D. K. Owen

Research was initiated to determine (a) whether a common waterhemp population was resistant to acetolactate synthase (ALS) inhibiting herbicides, (b) the percentage of the population that was ALS-inhibitor resistant, (c) the resistance mechanism, and (d) the effectiveness of a whole plant assay to detect ALS-inhibitor resistance. ALS-inhibitor resistance was confirmed in a common waterhemp population near Davis City, IA. The Davis City common waterhemp population was cross resistant to both imidazolinone and sulfonylurea herbicides, but not to lactofen. Approximately 10% of the Davis City common waterhemp population was sensitive to a rate of imazaquin 4 times the normal field rate. Davis City common waterhemp isolated ALS was much less sensitive to imazaquin and primisulfuron inhibition than was grain amaranth or an ALS-sensitive common waterhemp isolated ALS. Imazaquin I50values were 366.4 and 3.4 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. Primisulfuron I50values were 3.6 and 0.007 μM for ALS isolated from Davis City common waterhemp and grain amaranth, respectively. A whole plant ALS assay was developed that allowed for much more rapid detection of an ALS-resistant species and used less plant material than a conventional ALS assay.


2003 ◽  
Vol 83 (4) ◽  
pp. 1039-1066 ◽  
Author(s):  
M. Costea and F. J. Tardif

A review of biological information is provided for three species of the genus Amaranthus: A. albus L., A. blitoides S. Watson and A. blitum L. The last species has been revised taxonomically and a new subspecies for Canada is presented-A. blitum subsp. emarginatus (Moq. ex Uline & Bray) Carretero, Munoz Garmendia & Pedrol. Amaranthus albus and A. blitoides are native to the U.S.A. and introduced to Canada. Both species are annual ruderal and agrestal weeds. During the past 100 yr the two species have spread across most provinces of Canada, but the greatest frequency and abundance have been recorded in Saskatchewan. Originating from Europe, Asia and North Africa, A. blitum was initially considered a non-persistent species. The present study shows that A. blitum especially, subsp. emarginatus, has continued to spread in Québec. The three species are alternate hosts to many insects, nematodes, viruses, bacteria and fungi that affect cultivated plants. In other areas (U.S.A., Europe and Asia), the three species have developed multiple resistance to triazine and acetolactate-synthase-inhibiting herbicides. Key words: Amaranthus albus, Amaranthus blitoides, Amaranthus blitum, weed biology, ecology, taxonomy, herbicide resistance


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Patrick J. Tranel ◽  
Chenxi Wu ◽  
Ahmed Sadeque

It is generally expected that, in the case of multiple herbicide resistance, different resistance mechanisms within a weed will follow Mendel’s law of independent assortment. Research was conducted to investigate anecdotal observations suggesting that target site–based resistances to inhibitors of acetolactate synthase (ALS) and protoporphyrinogen oxidase (PPO) did not follow independent assortment in common waterhemp. Cosegregation of the two resistances was observed in backcross lines (population sensitive to both herbicides as recurrent parent). Specifically, whereas 52% of backcross plants were resistant to a PPO inhibitor, this percentage increased to 92% when the backcross plants were preselected for resistance to an ALS inhibitor. Molecular marker analysis confirmed that the corresponding genes (ALSandPPX2) were genetically linked. When data from all plants analyzed were pooled, the genetic distance between the two genes was calculated to be 7.5 cM. The two genes were found to be about 195 kb apart in the recently published grain amaranth genome, explaining the observed genetic linkage. There is likely enough recombination that occurs between the linked genes to prevent the linkage from having significant implications in terms of resistance evolution. Nevertheless, documentation of the happenstance linkage between target-site genes for resistance to ALS and PPO inhibitors in waterhemp is a reminder that one should not assume distinct resistance mechanism will independently assort.


2017 ◽  
Vol 31 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Debalin Sarangi ◽  
Lowell D. Sandell ◽  
Greg R. Kruger ◽  
Stevan Z. Knezevic ◽  
Suat Irmak ◽  
...  

The evolution of glyphosate and acetolactate synthase (ALS) inhibitor-resistant common waterhemp in the Midwestern United States has reduced the number of effective POST herbicide options for management of this problem weed in glyphosate-resistant soybean. Moreover, common waterhemp emerges throughout the crop growing season, justifying the need to evaluate herbicide programs that provide season-long control. The objectives of this study were to compare POST-only and PRE followed by (fb) POST herbicide programs for control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean. Field experiments were conducted in 2013 and 2014 in Dodge County, NE, in a field infested with glyphosate-resistant common waterhemp. Programs containing PRE herbicides resulted in ≥83% control of common waterhemp and densities of ≤35 plantsm–2at 21 d after PRE (DAPRE). Post-only herbicide programs resulted in <70% control and densities of 107 to 215 plants m–2at 14 d after early-POST (DAEPOST) treatment. PRE fb POST herbicide programs, including saflufenacil plus imazethapyr plus dimethenamid-P, sulfentrazone plus cloransulam, orS-metolachlor plus metribuzin, fb fomesafen plus glyphosate;S-metolachlor plus fomesafen fb acifluorfen plus glyphosate resulted in >90% control of glyphosate-resistant common waterhemp throughout the growing season, reduced density to ≤7plantsm–2, ≥92% biomass reduction, and soybean yield >2,200kg ha–1. Averaged across herbicide programs, common waterhemp control was 84%, and density was 15 plants m–2with PRE fb POST herbicide programs compared with 42% control, and density of 101 plants m–2with POST-only herbicide programs at harvest. Results of this study indicated that PRE fb POST herbicide programs with effective modes of action exist for season-long control of glyphosate-resistant common waterhemp in glyphosate-resistant soybean.


Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 582-587 ◽  
Author(s):  
Travis R. Legleiter ◽  
Kevin W. Bradley

Field and greenhouse experiments were conducted to determine the level of glyphosate resistance in common waterhemp populations from Platte County (MO1) and Holt County, Missouri (MO2), and to determine the level and distribution of resistance to glyphosate, acetolactate synthase (ALS)–inhibiting herbicides, and protoporophyrinogen oxidase (PPO)–inhibiting herbicides across the MO1 site. Results from greenhouse experiments revealed that the MO1 and MO2 waterhemp populations were 19 and 9 times more resistant to glyphosate, respectively, than a susceptible waterhemp population. In field experiments, greater than 54% of waterhemp at the MO1 site survived 1.7 kg glyphosate ae ha−1(twice the labeled rate) 6 wk after treatment. Tank-mix combinations of ALS- and PPO-inhibiting herbicides with glyphosate also failed to provide complete control of the waterhemp population at the MO1 site. Collection and screening of seed from individual female waterhemp accessions revealed multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides across the MO1 site. All 14 waterhemp accessions collected across the MO1 site exhibited greater than 65% survival to 2× rates of glyphosate and thifensulfuron, and these accessions were spread across a 5-km2(503-ha) area. Four waterhemp accessions collected across a 0.9-km2(87-ha) area also exhibited 26 to 38% survival to 2× rates of lactofen. The results from these experiments provide evidence and confirmation of the first glyphosate-resistant waterhemp population in the United States and reveal that multiple resistance to glyphosate, ALS-, and PPO-inhibiting herbicides can occur in waterhemp.


2017 ◽  
Vol 31 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Amit J. Jhala ◽  
Lowell D. Sandell ◽  
Debalin Sarangi ◽  
Greg R. Kruger ◽  
Steven Z. Knezevic

Glyphosate-resistant (GR) common waterhemp has become a significant problem weed in Nebraska and several Midwestern states. Several populations of GR common waterhemp are also resistant to acetolactate synthase (ALS)-inhibiting herbicides, making them difficult to control with POST herbicides in GR soybean. Glufosinate-resistant (GFR) soybean is an alternate system for controlling GR common waterhemp, justifying the need for evaluating glufosinate-based herbicide programs. The objectives of this study were to compare POST-only herbicide programs (including one-pass and two-pass POST programs) with PRE followed by (fb) POST herbicide programs for control of GR common waterhemp in GFR soybean and their effect on common waterhemp density, biomass, and soybean yield. Field experiments were conducted in 2013 and 2014 near Fremont, NE in a grower’s field infested with GR common waterhemp. Glufosinate applied early- and late-POST provided 76% control of GR common waterhemp at 14 d after late-POST (DALPOST) compared with 93% control with a PRE fb POST program when averaged across treatments. The PRE application of chlorimuron plus thifensulfuron plus flumioxazin,S-metolachlor plus fomesafen or metribuzin, saflufenacil plus dimethenamid-P fb glufosinate provided ≥95% control of common waterhemp throughout the growing season, reduced common waterhemp density to ≤2.0 plants m─2, caused ≥94% biomass reduction, and led to 1,984 to 2,210 kg ha─1soybean yield. Averaged across treatments, the PRE fb POST program provided 82% common waterhemp control at soybean harvest, reduced density to 23 plants m─2at 14 DALPOST, and caused 86% biomass reduction and 1,803 kg ha─1soybean yield compared with 77% control, 99 plants m─2, 53% biomass reduction, and 1,190 kg ha─1yield with POST-only program. It is concluded that PRE fb POST programs with multiple effective modes of action are available for control of GR common waterhemp in GFR soybean.


2015 ◽  
Vol 29 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Debalin Sarangi ◽  
Lowell D. Sandell ◽  
Stevan Z. Knezevic ◽  
Jatinder S. Aulakh ◽  
John L. Lindquist ◽  
...  

Glyphosate-resistant common waterhemp is a difficult-to-control annual broadleaf weed that has become a serious management challenge for growers in Nebraska and other states in the United States. The objectives of this study were to confirm glyphosate-resistant common waterhemp in Nebraska by quantifying level of resistance in a dose-response study, and to determine the sensitivity and efficacy of POST soybean herbicides for controlling suspected glyphosate-resistant common waterhemp biotypes. Seeds of suspected glyphosate-resistant common waterhemp biotypes were collected from seven eastern Nebraska counties. Greenhouse dose-response experiments were conducted to evaluate the response of common waterhemp biotypes to nine rates of glyphosate (0 to 16×). Common waterhemp biotypes were 3- to 39-fold resistant to glyphosate depending on the biotype being investigated and the susceptible biotype used for comparison. Results of the POST soybean herbicides efficacy experiment suggested that glyphosate-resistant biotypes, except a biotype from Pawnee County, had reduced sensitivity to acetolactate synthase (ALS)–inhibiting herbicides (chlorimuron-ethyl, imazamox, imazaquin, imazethapyr, and thifensulfuron-methyl). Glufosinate and protoporphyrinogen oxidase (PPO)–inhibiting herbicides (acifluorfen, fluthiacet-methyl, fomesafen, and lactofen) provided ≥ 80% control of glyphosate-resistant common waterhemp at 21 d after treatment (DAT). This study confirmed the first occurrence of glyphosate-resistant common waterhemp in Nebraska, and also revealed reduced sensitivity to ALS-inhibiting herbicides in most of the biotypes tested in this study.


Sign in / Sign up

Export Citation Format

Share Document