Histochemistry and UV-microspectrometry of cell walls of untreated and ammonia-treated barley straw

1998 ◽  
Vol 78 (3) ◽  
pp. 437-443 ◽  
Author(s):  
Masakazu Goto ◽  
Keiji Takabe ◽  
Isao Abe

Histochemical staining reactions with acid phloroglucinol and ultraviolet (UV) absorption spectra of the individual cell walls in spring barley straw (Hordeum vulgare L.) were investigated in combination with spectrometric measurements of the dioxane-water soluble lignin. Changes in lignin structure of barley straw with ammonia treatment were also investigated. Parenchyma and metaxylem vessel walls in untreated straw stained red with acid phloroglucinol and had higher absorbances around 550 nm than did epidermis and sclerenchyma cell walls, being consistent with the λmax of coniferylaldehyde. Following a reductive treatment, the lignins isolated from untreated barley straw showed an increase in UV absorbance at 280 nm and a decrease in that around 320 nm. These regions in UV and IR absorption spectra are assigned to conjugated carbonyl groups as shown by the narrowing of the IR absorption band at 1660 cm−1, and this was consistent with the staining observation of the specific tissue walls. UV microspectrometry indicated that parenchyma cell walls were much less lignified tissues than metaxylem and protoxylem vessel walls and probably epidermal cell walls. The lignins isolated from untreated and ammonia-treated straw had similar values for empirical formulae of the C9 units, phenolic hydroxyl and methoxyl group contents, and molecular weight, although the lignin of ammonia-treated straw had a slightly higher contents of nitrogen and hydrogen. The IR bands of 1730–1680 cm−1 in ammonia-treated straw lignin also disappeared. Therefore, ammonia appeared to react with the carbon atoms of the propane side-chain. Key words: Ammonia treatment, barley straw, lignin distribution, lignin structure, staining with acid phloroglucinol, ultraviolet microspectrometry

1985 ◽  
Vol 40 (1) ◽  
pp. 101-109 ◽  
Author(s):  
R. J. Orr ◽  
T. T. Treacher ◽  
V. C. Mason

ABSTRACTFinnish Landrace × Dorset Horn ewes were offered 300, 600 or 900 g fresh weight per day of concentrates and forage ad libitum from day 105 of pregnancy until lambing. Spring barley straw (S) or hay (H) was offered either untreated (U) or following treatment with anhydrous ammonia in an oven (T). Organic matter digestibilities (in vitro) were 0·42, 0·58, 0·42 and 0·60 and nitrogen contents were 7·2, 18·6, 12·0 and 25·0 g/kg dry matter for US, TS, UH and TH respectively. Forage intake did not differ between ewes carrying two or more foetuses but the small number of ewes carrying one foetus ate more straw (6·8 v. 4·5 g organic matter (OM) per kg live weight) than ewes carrying two or more foetuses. Ammonia treatment increased intake; the increase was larger on straw (4·6 v. 100 g OM per kg live weight) than on hay (9·0 v. 10·7 g OM per kg live weight). Replacement rates of forage by concentrates were -0·21, +0·06, -0·48 and +0·08 kg forage per kg concentrates for treatments US, TS, UH and TH respectively; only the value for treatment UH differed significantly from zero. On most treatments forage intake decreased as pregnancy progressed and the declines were greater when treated forages were offered. Concentrate level had a large effect on most aspects of ewe performance. Ewes offered treated forage gained slightly more weight in pregnancy (138 v. 104 g/day), had a slightly smaller decrease in body condition score (-0·54 v. -0·68) between day 105 and lambing but did not have greater lamb birth weights than ewes on untreated forage.


1978 ◽  
Vol 56 (20) ◽  
pp. 2550-2566 ◽  
Author(s):  
G. B. Ouellette

Plugging of certain vessels may occur in elm shortly after inoculation with the Dutch elm disease pathogen, Ceratocystis ulmi (Buism.) C. Moreau. Plugging components include fibrillar material of varying density and fungal cells traceable mostly to inoculated spores. Some material is similar to fungal cell contents, and indications of extrusion of the latter through ruptured or unruptured walls were obtained. Other material is also attributable to disintegrating fungal walls. Radioautographs obtained from samples treated with [6-3H]thymidine indicate significant labeling of fungal cell contents and of similar material, free.Similar fibrillar material, some labeled, is present within pit membranes, in adjacent parenchyma cell walls, and in periplasmic areas associated with retraction of the plasmalemma and with other cytoplasmic disturbances. Host vessel walls are also altered in the presence of some fibrillar material but apparently release only limited amounts of disintegration products into vessels.The possible implications of these observations are discussed in relation to current hypotheses on wilt diseases.


1993 ◽  
Vol 40 (2-3) ◽  
pp. 207-221 ◽  
Author(s):  
M. Goto ◽  
Y. Yokoe ◽  
K. Takabe ◽  
S. Nisikawa ◽  
O. Morita

2020 ◽  
Author(s):  
KJ Nunan ◽  
Ian Sims ◽  
A Bacic ◽  
SP Robinson ◽  
GB Fincher

Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30-40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.


1992 ◽  
Author(s):  
Del R. Lawson ◽  
Daniel L. Feldheim ◽  
Colby A. Foss ◽  
Peter K. Dorhoug ◽  
C. M. Elliott

2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Jadwiga Wyszkowska ◽  
Monika Tomkiel ◽  
Agata Borowik ◽  
Małgorzata Baćmaga ◽  
Jan Kucharski

Environmentally safe ways are sought to prevent the accumulation and to accelerate the degradation of herbicide active substances in agricultural soil. This study aimed to determine the effectiveness of finely-ground barley straw and bentonite in mitigating the effects of agricultural soil contamination with Successor T 550 SE. This herbicide was applied in the following doses: 0, 0.73, and 14.63 mg of the active substance per kg. The bentonite and spring barley straw were used at 10 g/kg. The action of these additives was compared to soil without the addition of straw and bentonite. The application of the experimental herbicide disturbed microbial systems, such as organotrophic bacteria, oligotrophic bacteria and their spores, actinobacteria, and fungi. A positive response to the herbicide dose of 14.63 mg a.s./kg was observed only for spores of oligotrophic bacteria. Further disturbances were observed in the agricultural soil biochemical properties, i.e., in the activity of dehydrogenases, urease, catalase, acid, and alkaline phosphatase, arylsulfatase, and β-glucosidase. A significant decrease in the activity of dehydrogenases, acid phosphatase, and arylsulfatase was observed following the application of 14.63 mg a.s./kg. The yield of maize decreased following the application of the analysed plant protection agent. Based on the soil quality index (BA), the addition of straw was more effective in restoring soil homeostasis than bentonite. Both bentonite and straw can be successfully used to improve agricultural soil biological activity. However, more effective mitigation of the negative effects of the herbicide in soil was observed in objects supplemented with barley straw. This improved the microbiological and biochemical properties of the soil. Barley straw was more effective than bentonite in restoring soil biological balance.


1976 ◽  
Vol 30 (2) ◽  
pp. 200-204 ◽  
Author(s):  
F. M. Abdel Kerim ◽  
F. Abou El Fotouh

The ir absorption spectra of some pyridine derivatives-iodine complexes were measured in the region 400 to 1400 cm−1 and the results are discussed. The effect of complex formation on the intensities of some of the bands was investigated. The thermodynamic constants of these complexes were calculated. It was found that the stability of the complex depends to a large extent on the electronegativity as well as the position of the substituent on the pyridine nucleus. The structures of formed complexes are discussed.


Sign in / Sign up

Export Citation Format

Share Document