Carbon and nitrogen mineralization in soil amended with non-tabletized and tabletized poultry manure

2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 846
Author(s):  
Mohammad Rafiqul Islam ◽  
Sultana Bilkis ◽  
Tahsina Sharmin Hoque ◽  
Shihab Uddin ◽  
Mohammad Jahiruddin ◽  
...  

Having up-to-date knowledge on the mineralization of organic materials and release of nutrients is of paramount significance to ensure crops’ nutrient demands, increase nutrient use efficiency and ensure the right fertilizer application at the right time. This study seeks to evaluate the mineralization patterns of various manures viz. cowdung (CD), cowdung slurry (CDSL), trichocompost (TC), vermicompost (VC), poultry manure (PM), poultry manure slurry (PMSL), and mungbean residues (MR). The objective being to establish their efficiency in releasing nutrients under aerobic (field capacity) and anaerobic (waterlogging) conditions. The incubation experiment was designed using a Completely Randomized Design (CRD) that took into account three variables: Manures, soil moisture, and incubation period. The mineralization of carbon (C) and nitrogen (N) ranged from 11.2 to 100.1% higher under aerobic conditions rather than anaerobic ones. The first-order kinetic model was used to mineralize both elements. C mineralization was 45.8 to 498.1% higher in an amount from MR under both moisture conditions. For N release, MR and PM exerted maximum amounts in anaerobic and aerobic scenarios, respectively. However, the rate of C and N mineralization was faster in TC compared to other manures in both moisture conditions. Although TC was 1.4 to 37.7% more efficient in terms of rapidity of mineralization, MR and PM performed better concerning the quantity of nutrient release and soil fertility improvement. PM had 22–24% higher N mineralization potential than PMSL while CDSL had 46–56% higher N mineralization potential than CD. C and N mineralization in soil was greater under aerobic conditions compared to what occurred in the anaerobic context. Depending on mineralization potential, the proper type and amount of manure should be added to soil to increase crops’ nutrient use efficiency, which in turn should lead to better crop production.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 943 ◽  
Author(s):  
DJ Ross ◽  
TW Speir ◽  
HA Kettles ◽  
KR Tate ◽  
AD Mackay

Grazing and fertilizer management practices are of prime importance for maintaining summer-moist hill pastures of introduced grasses and clovers in New Zealand for sheep and cattle production. The influence of withholding grazing (a pastoral fallow) from spring to late summer on microbial biomass, C and N mineralization, and enzyme activities was investigated in a Typic Dystrochrept soil from unfertilized and fertilized (rock phosphate and elemental S) low-fertility pastures at a temperate hill site. The fallow increased pasture but not legume growth in the following year in the unfertilized treatment, but had no effect on pasture or legume growth in fertilized plots. High background levels of the biochemical propel-ties examined, and very variable rates of N mineralization, complicated data interpretation. Extractable-C concentration and CO2-C production were enhanced at the completion of the fallow. Increases in net N mineralization (14-56 days incubation), following initial immobilization, after the fallow were clearly indicated in the unfertilized treatment, but were less distinct, in the fertilized treatment. The fallow had no detectable influence on the concentrations of total C and N or microbial C and P, or on invertase, phosphodiesterase and sulfatase activities. Some small changes in microbial N and an increased proportion of bacteria in the microbial population were, however, suggested. Results are consistent with the concept of fallowing giving a short-term increase in pools of readily decomposable soil organic matter. Generally, the changes that did occur in these soil biochemical properties are, with the partial exception of increased N availability, unlikely to have had any pronounced impact on subsequent pasture performance.


2004 ◽  
Vol 31 (1) ◽  
pp. 6-11 ◽  
Author(s):  
K. S. Balkcom ◽  
C. W. Wood ◽  
J. F. Adams ◽  
B. H. Wood

Abstract Legumes typically mineralize rapidly and can contribute to nitrogen (N) requirements of succeeding crops, but limited information exists on the mineralizable N content of peanut (Arachis hypogaea L.) residue. The objective of this study was to determine net N mineralization from two types of peanut residue for two soil types. Aboveground peanut residue (cv. Georgia Green) was collected 1 d prior to digging (PRE) and immediately after peanut threshing (POST). Leaf and stem residues were mixed and analyzed for carbon (C), N, lignin, and cellulose. Peanut residue equivalent to 4.5 Mg/ha was applied to a Greenville fine sandy loam (fine, kaolinitic, thermic Rhodic Kandiudults) and a Tifton loamy sand (fine-loamy, kaolinitic, thermic Plinthic Kandiudult) and aerobically incubated for 98 d in the dark at 25 C to determine C and N mineralization. Each soil was incubated simultaneously, with and without residue. PRE harvest residue had lower C, lignin, and cellulose concen-trations, but higher N concentrations than POST harvest residue. Differences in residue quality corresponded to differences in cumulative C mineralized and C turnover for the Tifton soil, but did not result in differences for cumulative N mineralized or relative N mineralized within either soil type. These data indicate that peanut residue will not supply significant amounts of N to a subsequent crop for these two soil types.


1994 ◽  
Vol 24 (12) ◽  
pp. 2432-2438 ◽  
Author(s):  
C.E. Prescott ◽  
M.A. McDonald

The potential for amendments of simple C compounds or lime to improve N availability in humus from cedar–hemlock cutovers was tested in laboratory incubations and a greenhouse bioassay. Rates of C and N mineralization in samples of humus and woody humus during aerobic incubations in the laboratory were not affected by additions of potato starch. Mineralization of C was stimulated and net N mineralization was reduced after glucose addition. Microorganisms in humus may not be capable of degrading starch, and simpler C sources such as glucose increase immobilization of N in microbial biomass. The biomass of seedlings of western red cedar (Thujaplicata Donn), western hemlock (Tsugaheterophylla (Raf.) Sarg.), and Sitka spruce (Piceasitchensis (Bong.) Carr.) grown in pots containing cedar–hemlock humus amended with dolomitic lime was similar to the biomass of seedlings grown in unamended humus after 18 months. Seedlings grown in humus amended with N and P fertilizers were significantly larger than those grown in unamended or lime-amended humus. It is unlikely that applications of C or lime to cedar–hemlock cutovers would increase rates of N mineralization from humus. Additions of nutrients appear to be the only practical means of alleviating the nutrient supply problems on these sites.


2010 ◽  
Vol 34 (5) ◽  
pp. 1573-1583 ◽  
Author(s):  
Elcio Liborio Balota ◽  
Julio César Dias Chaves

There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.


2014 ◽  
Vol 11 (6) ◽  
pp. 9667-9695 ◽  
Author(s):  
C. M. White ◽  
A. R. Kemanian ◽  
J. P. Kaye

Abstract. Carbon (C) saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved simply by adding a second pool to the model to represent short-term storage and turnover of C and N in microbial biomass. These findings increase our understanding of how to couple C saturation and N mineralization models, while offering new hypotheses about the relationship between C saturation and N mineralization that can be tested empirically.


2014 ◽  
Vol 6 (2) ◽  
pp. 3051-3074 ◽  
Author(s):  
M. K. Abbasi ◽  
M. M. Tahir ◽  
N. Sabir ◽  
M. Khurshid

Abstract. Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg−1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg−1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg−1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = −0.84; p ≤ 0.01), C/N ratio (r = −0.69; p ≤ 0.05), lignin/N ratio (r = −0.68; p ≤ 0.05), polyphenol/N ratio (r = −0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = −0.70; p ≤ 0.05) indicating a significant role of residue chemical composition and quality in regulating N transformations and cycling in soil. The present study indicates that incorporation of plant residues strongly modify the mineralization-immobilization turnover (MIT) of soil that can be taken into account to develop synchronization between net N mineralization and crop demand in order to maximize N delivery and minimize N losses.


Sign in / Sign up

Export Citation Format

Share Document