scholarly journals Response of Kansas Feral Rye Populations to Aggressor Herbicide and Management in CoAXium Wheat Production System

Author(s):  
V. Kumar ◽  
R. Liu ◽  
T. Lambert
2021 ◽  
Vol 32 (4) ◽  
pp. 151-157
Author(s):  
Raven A. Bough ◽  
Phillip Westra ◽  
Todd A. Gaines ◽  
Eric P. Westra ◽  
Scott Haley ◽  
...  

The authors discuss the importance of wheat as a global food source and describe a novel multi-institutional, public-private partnership between Colorado State University, the Colorado Wheat Research Foundation, and private chemical and seed companies that resulted in the development of a new herbicide-resistant wheat production system.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 849
Author(s):  
Lisa Mølgaard Lehmann ◽  
Magdalena Borzęcka ◽  
Katarzyna Żyłowska ◽  
Andrea Pisanelli ◽  
Giuseppe Russo ◽  
...  

Given the environmental footprints of the conventional agriculture, it is imperative to test and validate alternative production systems, with lower environmental impacts to mitigate and adapt our production systems. In this study, we identified six production systems, four in Italy and two in Denmark, to assess the environmental footprint for comparison among the production systems and additionally with conventional production systems. SimaPro 8.4 software was used to carry out the life cycle impact assessment. Among other indicators, three significantly important indicators, namely global warming potential, acidification, and eutrophication, were used as the proxy for life cycle impact assessment. In Italy, the production systems compared were silvopastoral, organic, traditional, and conventional olive production systems, whereas in Denmark, combined food and energy production system was compared with the conventional wheat production system. Among the six production systems, conventional wheat production system in Denmark accounted for highest global warming potential, acidification, and eutrophication. In Italy, global warming potential was highest in traditional agroforestry and lowest in the silvopastoral system whereas acidification and eutrophication were lowest in the traditional production system with high acidification effects from the silvopastoral system. In Italy, machinery use contributed the highest greenhouse gas emissions in silvopastoral and organic production systems, while the large contribution to greenhouse gas emissions from fertilizer was recorded in the traditional and conventional production systems. In Denmark, the combined food and energy system had lower environmental impacts compared to the conventional wheat production system according to the three indicators. For both systems in Denmark, the main contribution to greenhouse gas emission was due to fertilizer and manure application. The study showed that integrated food and non-food systems are more environmentally friendly and less polluting compared to the conventional wheat production system in Denmark with use of chemical fertilizers and irrigation. The study can contribute to informed decision making by the land managers and policy makers for promotion of environmentally friendly food and non-food production practices, to meet the European Union targets of providing biomass-based materials and energy to contribute to the bio-based economy in Europe and beyond.


2012 ◽  
Vol 518-523 ◽  
pp. 1145-1150
Author(s):  
Xun Feng Xia ◽  
Ming Xin Wang ◽  
Lin Yuan ◽  
Bei Dou Xi

Life cycle analysis method was used to establish an inventory of a winter wheat production system that employed the Soil Testing and Formulated Fertilization Program in Linqing county, China, after which the net resource conservation and emission reduction benefits were calculated, evaluated and compared to the winter wheat production system in a conventional fertilization area. The results revealed a great reduction in resource consumption and emissions of the winter wheat production system in the program demonstration area. From 2006 to 2010, the life cycle reduction potentials of eutrophication, and acidification potential per ton of winter wheat accounted for 12.09-30.31% and 1.40-4.52% of the relevant environmental impact potential per capita worldwide in 2000, respectively. The Program significantly decreased the environmental burdens of the winter wheat production system, and farmer’s fertilization behavior tended to become rational.


2005 ◽  
Vol 19 (2) ◽  
pp. 437-442 ◽  
Author(s):  
Jason A. Bond ◽  
Daniel O. Stephenson ◽  
Jeffrey W. Barnes ◽  
Mohammad T. Bararpour ◽  
Lawrence R. Oliver

Field research was conducted in Arkansas for 3 yr to evaluate imazamox for control of diclofop-resistant Italian ryegrass in imidazolinone-tolerant wheat. Italian ryegrass was controlled at least 89% 49 d after wheat emergence (DAE) in year 2 and 3 by imazamox at 36 g ai/ha applied to one- to two-leaf wheat (POST1), by imazamox at 54 g ai/ha applied sequentially at POST1 followed by (fb) application to three- to four-leaf wheat (POST2), by pendimethalin at 1120 g ai/ha preemergence (PRE) fb imazamox at 36 or 54 g/ha POST1, and by chlorsulfuron plus metsulfuron at 22 plus 4 g ai/ha PRE. Italian ryegrass was controlled at least 95% 150 DAE with all applications in year 1 because of extremely cold temperatures and snowfall in December and January. Only sequential imazamox applications or pendimethalin PRE fb imazamox POST1 equaled the commercial standard, chlorsulfuron plus metsulfuron, for control of Italian ryegrass 150 DAE in years 2 and 3. These treatments controlled Italian ryegrass greater than 80% 150 DAE. Sequential postemergence applications of imazamox or programs containing pendimethalin PRE fb imazamox POST1 are necessary to optimize Italian ryegrass control and wheat yield in an imidazolinone-tolerant wheat production system.


2013 ◽  
Vol 49 (3) ◽  
pp. 321-335 ◽  
Author(s):  
RAMAN JEET SINGH ◽  
I. P. S. AHLAWAT ◽  
KULDEEP KUMAR

SUMMARYThe cotton–wheat production system (CWPS) occupies an important place in the agricultural economy of several South Asian countries. The instability of the CWPS has increased particularly during the post-transgenic hybrids phase mainly because of these hybrids calling for intensive crop management being cultivated under all situations, especially in resource-poor conditions leading to violent fluctuations during adverse years and thereby affecting the socio-economic status of these developing countries. A study was conducted to evaluate and quantify the effect of the two-tier intercropping of cotton and peanut with the substitution of a 25–50% recommended dose of nitrogen (RDN) of cotton by farmyard manure (FYM) on productivity, profitability and nitrogen economy in the CWPS at New Delhi during 2006–08. To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100 and 150 kg ha−1. Wheat equivalent productivity was significantly more with the inclusion of peanut in the CWPS (21–26%) with a high net return (US$288) than a pure stand of cotton in the CWPS. The substitution of 25% RDN of cotton by FYM being on par with no substitution recorded a higher wheat equivalent yield, nitrogen, phosphorus and potassium uptake, net return and nitrogen use efficiencies. Nitrogen economy in wheat was 22 kg ha−1 due to inclusion of peanut in the CWPS and 13 kg ha−1 due to substitution of the 25% RDN of cotton by FYM. The study suggested that for the success of the CWPS in South Asian countries, escalating prices of N fertilizers with environmental issues and the instability of transgenic hybrids can be overcome by using wider rows of cotton by peanut intercrop with the integrated use of both organic and inorganic sources of nitrogen.


Sign in / Sign up

Export Citation Format

Share Document