scholarly journals Interaction of 2,4-D with Glyphosate or Graminicides on Grass Weed Control in Enlist E3 Soybeans

Author(s):  
R. Liu ◽  
I. Effertz ◽  
T. Lambert ◽  
A. Jhala ◽  
V. Kumar
Keyword(s):  
1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


1998 ◽  
Vol 12 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Robert C. Scott ◽  
David R. Shaw ◽  
Randall L. Ratliff ◽  
Larry J. Newsom

Greenhouse and field experiments were conducted to evaluate early postemergence (POST) tank mixtures of SAN 582 with fluazifop-P, imazethapyr, or sethoxydim. In the greenhouse, SAN 582 synergistically improved barnyardgrass, broadleaf signalgrass, and johnsongrass control from imazethapyr and sethoxydim. Half-rates of imazethapyr and sethoxydim tank-mixed with SAN 582 controlled grass weeds as well as full rates of either herbicide applied alone. Grass weed control with imazethapyr increased up to 40% with the addition of SAN 582. In field experiments, SAN 582 increased grass control with imazethapyr to a lesser degree than observed in the greenhouse. In a multispecies study, grass weed control increased up to 15% when SAN 582 was tank-mixed with a reduced rate of imazethapyr, although the full rate of imazethapyr applied POST with or without SAN 582 controlled grass weeds 80% or less. The combination of SAN 582 with sethoxydim was synergistic for barnyardgrass and johnsongrass control in this experiment. When applied POST in soybean, SAN 582 plus fluazifop-P or sethoxydim controlled barnyardgrass throughout the season better than a single POST application of a graminicide.


2002 ◽  
Vol 139 (4) ◽  
pp. 385-395 ◽  
Author(s):  
A. M. BLAIR ◽  
P. A. JONES ◽  
R. H. INGLE ◽  
N. D. TILLETT ◽  
T. HAGUE

Two systems for integrated weed control in winter wheat based around the combination of herbicides with cultural control have been investigated and compared with conventional practice in experiments between 1993 and 2001. These systems were (a) an overall spray of a reduced herbicide dose followed by spring tine harrow weeding and (b) the combination of herbicide applied over the crop row with a novel vision guided inter-row hoe. The latter required wheat to be established with a wider (22 cm) inter-row spacing than standard (12·5 cm). Experiments over 10 sites/seasons indicated that this increased spacing could be achieved without yield loss. Trials to measure the accuracy of hoe blade lateral positioning using the vision guidance system indicated that error was normally distributed with standard deviation of 12 mm and a bias that could be set to within 1 cm. This performance could be maintained through the normal hoeing period and the crop row location and tracking techniques were robust to moderate weed infestation. In the absence of weeds neither overall harrowing nor inter-row hoeing affected winter wheat yield, 1000-seed weight or specific weight in 12·5 or 22 cm rows. When combined with inter-row hoeing, manually targeted banded applications of fluazolate, pendimethalin or isoproturon reduced grass weed levels and increased yields over untreated controls, though better results were obtained using overall herbicides. However, improvements would be possible with more accurately targeted herbicide applications and more effective inter-row grass weed control. The implications and costs of using such an integrated system are discussed and requirements for future developments identified.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1131 ◽  
Author(s):  
Luke H. Merritt ◽  
Jason Connor Ferguson ◽  
Ashli E. Brown-Johnson ◽  
Daniel B. Reynolds ◽  
Te-Ming Tseng ◽  
...  

Dicamba and 2,4-D tolerance traits were introduced to soybean and cotton, allowing for over the top applications of these herbicides. Avoiding antagonism of glyphosate and clethodim by dicamba or 2,4-D is necessary to achieve optimum weed control. Three field studies were conducted in fallow fields with broadleaf signalgrass (Urochloa platyphylla) and Italian ryegrass (Lolium perenne ssp. multiflorum) pressure. A tractor-mounted dual boom sprayer was modified to spray one of three application methods: (1) two herbicides tanked-mixed (TMX); (2) two herbicides in separate tanks mixed in the boom line (MIL); and (3) two herbicides in separate tanks applied through separate booms simultaneously (SPB). One study compared the three application methods with sethoxydim applied with bentazon, the second compared clethodim applied with dicamba or 2,4-D, and the third compared glyphosate applied with dicamba or 2,4-D. In most cases over all three trials, there was a 7–15% increase in efficacy when using the SPB application method. Antagonism of all the herbicide combinations above was observed when applied using the TMX and MIL methods. In some cases, antagonism was avoided when using the SPB method. The separate boom application method increased efficacy, which allowed herbicides to be used more effectively, resulting in improved economic and environmental sustainability of herbicide applications.


2020 ◽  
pp. 1-5
Author(s):  
Tameka L. Sanders ◽  
Jason A. Bond ◽  
Benjamin H. Lawrence ◽  
Bobby R. Golden ◽  
Thomas W. Allen ◽  
...  

Abstract Information on performance of sequential treatments of quizalofop-P-ethyl with florpyrauxifen-benzyl on rice is lacking. Field studies were conducted in 2017 and 2018 in Stoneville, MS, to evaluate sequential timings of quizalofop-P-ethyl with florpyrauxifen-benzyl included in preflood treatments of rice. Quizalofop-P-ethyl treatments were no quizalofop-P-ethyl; sequential applications of quizalofop-P-ethyl at 120 g ha−1 followed by (fb) 120 g ai ha−1 applied to rice in the 2- to 3-leaf (EPOST) fb the 4-leaf to 1-tiller (LPOST) growth stages or LPOST fb 10 d after flooding (PTFLD); quizalofop-P-ethyl at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST or LPOST fb PTFLD; quizalofop-P-ethyl at 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST and LPOST fb PTFLD; and quizalofop-P-ethyl at 85 g ha−1 fb 77 g ha−1 fb 77 g ha−1 EPOST fb LPOST fb PTFLD. Quizalofop-P-ethyl was applied alone and in mixture with florpyrauxifen-benzyl at 29 g ai ha−1 LPOST. Visible rice injury 14 d after PTFLD (DA-PTFLD) was no more than 3%. Visible control of volunteer rice (‘CL151’ and ‘Rex’) 7 DA-PTFLD was similar and at least 95% for each quizalofop-P-ethyl treatment. Barnyardgrass control with quizalofop-P-ethyl at 120 fb 120 g ha−1 LPOST fb PTFLD was greater (88%) in mixture with florpyrauxifen-benzyl. The addition of florpyrauxifen-benzyl to quizalofop-P-ethyl increased rough rice yield when quizalofop-P-ethyl was applied at 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST. Sequential applications of quizalofop-P-ethyl at 120 g ha−1 fb 120 g ha−1 EPOST fb LPOST, 100 g ha−1 fb 139 g ha−1 EPOST fb LPOST, or 139 g ha−1 fb 100 g ha−1 EPOST fb LPOST controlled grass weed species. The addition of florpyrauxifen-benzyl was not beneficial for grass weed control. However, because quizalofop-P-ethyl does not control broadleaf weeds, florpyrauxifen-benzyl could provide broad-spectrum weed control in acetyl coenzyme A carboxylase–resistant rice.


2020 ◽  
Vol 34 (6) ◽  
pp. 834-842
Author(s):  
Caio A. C. G. Brunharo ◽  
Seth Watkins ◽  
Bradley D. Hanson

AbstractWeed control in tree nut orchards is a year-round challenge for growers that is particularly intense during winter through summer as a result of competition and interference with management and harvest operations. A common weed control program consists of an application of a winter PRE and POST herbicide mixture, followed by a desiccation treatment in early spring and before harvest. Because most spring and summer treatments depend on a limited number of foliar-applied herbicides, summer-germinating species and/or herbicide-resistant biotypes become troublesome. Previous research has established effective PRE herbicide programs targeting winter glyphosate-resistant weeds. However, more recently, growers have reported difficulties in controlling several summer-germinating grass weeds with documented or suspected resistance to the spring and summer POST herbicide programs. In this context, research was conducted to evaluate a sequential PRE approach to control winter- and summer-germinating orchard weeds. Eight field experiments were conducted in tree nut orchards to evaluate the efficacy of common winter herbicide programs and a sequential herbicide program for control of a key summer grass weed species. In the sequential-application strategy, three foundational herbicide programs applied in the winter were either mixed with pendimethalin, followed with pendimethalin in March, or applied as a split application of pendimethalin in both winter and spring. Results indicate that the addition of pendimethalin enhanced summer grass weed control throughout the crop growing season by up to 31%. Applying all or part of the pendimethalin in the spring improved control of the summer grass weed junglerice by up to 49%. The lower rate of pendimethalin applied in the spring performed as well as the high rate in the winter, suggesting opportunities for reducing herbicide inputs. Tailoring sequential herbicide programs to address specific weed challenges can be a viable strategy for improving orchard weed control without increasing herbicide use in some situations.


2011 ◽  
Vol 25 (4) ◽  
pp. 620-625 ◽  
Author(s):  
L. K. Fedoruk ◽  
S. J. Shirtliffe

Conventional lentil, because it is relatively noncompetitive, requires effective weed control. In conventional lentil, metribuzin should be applied by the four-node stage to avoid crop injury. This is earlier than the critical period of weed control (CPWC) of lentil, which is between the five- and 10-node stage. However, imidazolinone herbicides potentially can be applied later in imidazolinone-resistant lentil, which might allow lentil to be kept weed-free for the CPWC. The objective of this experiment was to determine the best herbicide choice and application timing necessary to achieve the CPWC in lentil. To do this we tested herbicides differing in efficacy and residual control. The herbicides imazethapyr/imazamox, imazamox, and metribuzin + sethoxydim were applied at the two- and six-node lentil stage. Of the three herbicide treatments, metribuzin + sethoxydim resulted in grain yield that was on average 31% lower than the other herbicides. This occurred because of greater broadleaf biomass (composed primarily of wild mustard) in lentils treated with these herbicides regardless of application timing. Because of this, the CPWC was not attained with metribuzin + sethoxydim. Late applications of imazethapyr/imazamox or imazamox resulted in grain yields 30% higher than with early application of these herbicides. Early applications of the imidazolinone herbicides gave poor control of grass weeds (wild oat and green foxtail), but late applications resulted in grass weed control equivalent to metribuzin + sethoxydim. Imazethapyr/imazamox or imazamox should be applied at the five- to six-node stage of lentil to achieve the CPWC.


2007 ◽  
Vol 26 (9) ◽  
pp. 1385-1389 ◽  
Author(s):  
Mohammad Ali Baghestani ◽  
Eskandar Zand ◽  
Saeid Soufizadeh ◽  
Mohammad Jamali ◽  
Fariba Maighany

Sign in / Sign up

Export Citation Format

Share Document