scholarly journals Determination of serological profiles and avidity of specific antibodies in the sera of patients with potential Epstein-Barr virus (EBV) infection

2013 ◽  
Vol 114 (08) ◽  
pp. 460-463
Author(s):  
N. Akpolat ◽  
M. Gedik ◽  
S. Nergiz ◽  
H. Bilek
2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Eric R. Weiss ◽  
Galit Alter ◽  
Javier Gordon Ogembo ◽  
Jennifer L. Henderson ◽  
Barbara Tabak ◽  
...  

ABSTRACT The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro. The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.


2020 ◽  
Vol 7 (3) ◽  
pp. 27-36
Author(s):  
E. O. Ignatova ◽  
D. A. Seryak ◽  
M. Yu. Fedyanin ◽  
A. A. Tryakin ◽  
I. A. Pokataev ◽  
...  

Epstein–Barr virus (EBV) associated gastric carcinoma is a special form of gastric adenocarcinoma that arises against the background of clonal growth of EBV-infected epithelial cells of the gastric mucosa. This subtype of tumors has unique genetic and epigenetic features that determine its characteristic phenotype. Determination of the molecular features of EBV-associated gastric cancer made it possible to identify potential targets for drug therapy of this subtype of tumors. The review presents modern data on the epidemiology and pathogenesis of EBVassociated gastric cancer, describes its unique pathomorphological and molecular features. Particular attention is paid to the prognostic role of EBV infection and drug therapy potentially applicable to the treatment of EBV-positive gastric cancer.


2021 ◽  
pp. 134-140
Author(s):  
Luca Ena ◽  
Vittorio Mazzarello ◽  
Marco Ferrari ◽  
Pasquale Ena

Erythema annulare centrifugum (EAC) is a rare erythema characterized by erythematous and urticarial papules or annular plaques that enlarges centrifugally. The lesions usually involve the thighs and the legs. Several disorders are occasionally associated with EAC, infections, including mycoses, bacteria, or viruses and drugs have also been regarded as possible causes of this eruption. We present a 42-year-old dark-skinned woman affected by recurrent EAC that appeared secondary to influenza type A (H1N1). Histopathology showed a superficial form of EAC. In our case, a previous cytomegalovirus and Epstein-Barr virus (EBV) infection were identified and no underlying other diseases were found. Clarithromycin with calcipotriol betamethasone treatment was temporarily efficacious. In the last 3 years, the lesions started to appear every 2 weeks and tended to regress with local treatment after a variable period. We believe that the latent cytomegalovirus and the reactivity induced by EBV combined with influenza can determine, in our case, a cell mediate cutaneous immune response, which leads to the peculiar inflammatory disease known as EAC.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Lisa Grossman ◽  
Chris Chang ◽  
Joanne Dai ◽  
Pavel A. Nikitin ◽  
Dereje D. Jima ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out. Epstein-Barr virus (EBV), an oncogenic herpesvirus, infects and transforms primary B cells into immortal lymphoblastoid cell lines (LCLs), providing a model for EBV-mediated tumorigenesis. EBV transformation stimulates robust homotypic aggregation, indicating that EBV induces molecules that mediate cell-cell adhesion. We report that EBV potently induced expression of the adhesion molecule CD226, which is not normally expressed on B cells. We found that early after infection of primary B cells, EBV promoted an increase in CD226 mRNA and protein expression. CD226 levels increased further from early proliferating EBV-positive B cells to LCLs. We found that CD226 expression on B cells was independent of B-cell activation as CpG DNA failed to induce CD226 to the extent of EBV infection. CD226 expression was high in EBV-infected B cells expressing the latency III growth program, but low in EBV-negative and EBV latency I-infected B-lymphoma cell lines. We validated this correlation by demonstrating that the latency III characteristic EBV NF-κB activator, latent membrane protein 1 (LMP1), was sufficient for CD226 upregulation and that CD226 was more highly expressed in lymphomas with increased NF-κB activity. Finally, we found that CD226 was not important for LCL steady-state growth, survival in response to apoptotic stress, homotypic aggregation, or adhesion to activated endothelial cells. These findings collectively suggest that EBV induces expression of a cell adhesion molecule on primary B cells that may play a role in the tumor microenvironment of EBV-associated B-cell malignancies or facilitate adhesion in the establishment of latency in vivo. IMPORTANCE Epstein-Barr virus (EBV) is a common human herpesvirus that establishes latency in B cells. While EBV infection is asymptomatic for most individuals, immune-suppressed individuals are at significantly higher risk of a form of EBV latent infection in which infected B cells are reactivated, grow unchecked, and generate lymphomas. This form of latency is modeled in the laboratory by infecting B cells from the blood of normal human donors in vitro. In this model, we identified a protein called CD226 that is induced by EBV but is not normally expressed on B cells. Rather, it is known to play a role in aggregation and survival signaling of non-B cells in the immune system. Cultures of EBV-infected cells adhere to one another in “clumps,” and while the proteins that are responsible for this cellular aggregation are not fully understood, we hypothesized that this form of cellular aggregation may provide a survival advantage. In this article, we characterize the mechanism by which EBV induces this protein and its expression on lymphoma tissue and cell lines and characterize EBV-infected cell lines in which CD226 has been knocked out.


2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


Oncogene ◽  
2009 ◽  
Vol 29 (4) ◽  
pp. 503-515 ◽  
Author(s):  
S Lacoste ◽  
E Wiechec ◽  
A G dos Santos Silva ◽  
A Guffei ◽  
G Williams ◽  
...  

2007 ◽  
Vol 17 (2) ◽  
pp. 532-535 ◽  
Author(s):  
S. Rahimi ◽  
A. Lena ◽  
G. Vittori

The aim of this study was to report a case of primary lymphoepitheliomalike endometrial carcinoma (FIGO stage IB). A 57-year-old woman presented with an endometrial tumor showing the classic clinical and hysteroscopic aspects of endometrial carcinoma. Morphologically, the neoplasm was similar to undifferentiated nasopharyngeal carcinoma (lymphoepithelioma). Immunohistochemistry showed that the tumor cells were cyokeratins and epithelial membrane antigen positive. Leucocyte common antigen, estrogen and progesterone receptors, neuron specific enolase, cromogranin, synaptophysin, and p53 were negative. We did not find evidence of Epstein–Barr virus (EBV) infection using immunohistochemistry and polymerase chain reaction (PCR). We report the third case of an endometrial lymphoepitheliomalike carcinoma (LELC). The patient did not receive chemotherapy and is alive and free of disease 24 month after diagnosis. LELC can occur in the endometrium and in this location may not be associated with EBV infection


Sign in / Sign up

Export Citation Format

Share Document