scholarly journals Microstructure characteristics of Laser-MIG hybrid welded 2A12 aluminum alloy joint with titanium addition and heat treatment conditions

2021 ◽  
Vol 51 (05) ◽  
pp. 291-297
Author(s):  
J. YAN ◽  
M. GAO ◽  
G. LI ◽  
C. ZHANG ◽  
M. JIANG ◽  
...  
2008 ◽  
Vol 58 (8) ◽  
pp. 363-367 ◽  
Author(s):  
Satoru SATO ◽  
Yasunori HARADA ◽  
Hiroto SASAKI ◽  
Naoki ISHIBASHI ◽  
Mitsuru ADACHI

2013 ◽  
Vol 535-536 ◽  
pp. 275-278
Author(s):  
Myeong Han Lee ◽  
Young Chul Shin ◽  
Duk Jae Yoon

Tube hydroforming is a metal forming technology that utilizes internal pressure and axial compressive loads to generate designed product shapes with complex sections from tubular materials. The tube hydroforming process has been used in the automotive, aircraft, and bicycle industries for many years. With the pursuit of lighter bicycles, aluminum alloys have been utilized as an alternative to steel. To obtain adequate strength, the aluminum alloys should undergo heat treatment processes before being used. However, the mechanical properties of the alloys vary with the tempering conditions. This paper aims to evaluate the effects of tube hydroforming characteristics on different kinds of tempered aluminum alloys. Based on numerical simulations, suitable tube hydroforming processing conditions for each tempered aluminum alloy are suggested.


2019 ◽  
Vol 11 (0) ◽  
pp. 1-5
Author(s):  
Hanae Chabba ◽  
Irmantas Gedzevičius ◽  
Valentinas Varnauskas ◽  
Driss Dafir ◽  
Fouzi Belmir

This study aims to understand the influence of heat treatment on behavior of AA6061 aluminum alloy at room temperature for various heat treatment. Two experimental parameters for this alloy are defined: micro hardness and the electrical resistivity, as a function of heat treatment at ambient temperature. The results show that the heat treatment conditions have an effective influence in mechanical properties of Al-Mg-Si aluminum alloy. This variation of the mechanical properties is the result of microstructural changes which have been observed using optical microscopy. When the material is subjected to a solution heat treatment followed by quenching and artificial aging, its mechanical properties, especially micro hardness and electrical resistivity, reach their highest levels and become very good compared to the other heat treatment applied to the same alloy.


2016 ◽  
Vol 25 (3-4) ◽  
pp. 89-98 ◽  
Author(s):  
C. Rajendran ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractFriction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document