scholarly journals Expansions of the Real Field by Canonical Products

2019 ◽  
Vol 63 (3) ◽  
pp. 506-521
Author(s):  
Chris Miller ◽  
Patrick Speissegger

AbstractWe consider expansions of o-minimal structures on the real field by collections of restrictions to the positive real line of the canonical Weierstrass products associated with sequences such as $(-n^{s})_{n>0}$ (for $s>0$) and $(-s^{n})_{n>0}$ (for $s>1$), and also expansions by associated functions such as logarithmic derivatives. There are only three possible outcomes known so far: (i) the expansion is o-minimal (that is, definable sets have only finitely many connected components); (ii) every Borel subset of each $\mathbb{R}^{n}$ is definable; (iii) the expansion is interdefinable with a structure of the form $(\mathfrak{R}^{\prime },\unicode[STIX]{x1D6FC}^{\mathbb{Z}})$ where $\unicode[STIX]{x1D6FC}>1$, $\unicode[STIX]{x1D6FC}^{\mathbb{Z}}$ is the set of all integer powers of $\unicode[STIX]{x1D6FC}$, and $\mathfrak{R}^{\prime }$ is o-minimal and defines no irrational power functions.

2010 ◽  
Vol 75 (4) ◽  
pp. 1441-1461
Author(s):  
Tom Foster

AbstractWe prove that given any first order formula ϕ in the language L′ = {+, ·, <,(fi)iЄI, (ci)iЄI}, where the fi are unary function symbols and the ci are constants, one can find an existential formula Ψ such that φ and Ψ are equivalent in any L′-structure


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


Author(s):  
Yuan Lo

The character and status are presented together. Others have to play the role. The real situation is to be presented in a simple way. It can be understood how to adapt yourself to the real field. The role of the actress is to be revealed. Students get real-life education in the artificial environment. Performances of speech and expression are improved.


Author(s):  
Vladimir Petrov Kostov

The bivariate series defines a partial theta function. For fixed q (∣q∣ < 1), θ(q, ·) is an entire function. For q ∈ (–1, 0) the function θ(q, ·) has infinitely many negative and infinitely many positive real zeros. There exists a sequence of values of q tending to –1+ such that has a double real zero (the rest of its real zeros being simple). For k odd (respectively, k even) has a local minimum (respectively, maximum) at , and is the rightmost of the real negative zeros of (respectively, for k sufficiently large is the second from the left of the real negative zeros of ). For k sufficiently large one has . One has and .


2002 ◽  
Vol 67 (1) ◽  
pp. 438-448 ◽  
Author(s):  
Chris Miller ◽  
Patrick Speissegger

In this paper, we continue investigations into the asymptotic behavior of solutions of differential equations over o-minimal structures.Let ℜ be an expansion of the real field (ℝ, +, ·).A differentiable map F = (F1,…, F1): (a, b) → ℝi is ℜ-Pfaffian if there exists G: ℝ1+l → ℝl definable in ℜ such that F′(t) = G(t, F(t)) for all t ∈ (a, b) and each component function Gi: ℝ1+l → ℝ is independent of the last l − i variables (i = 1, …, l). If ℜ is o-minimal and F: (a, b) → ℝl is ℜ-Pfaffian, then (ℜ, F) is o-minimal (Proposition 7). We say that F: ℝ → ℝl is ultimately ℜ-Pfaffian if there exists r ∈ ℝ such that the restriction F ↾(r, ∞) is ℜ-Pfaffian. (In general, ultimately abbreviates “for all sufficiently large positive arguments”.)The structure ℜ is closed under asymptotic integration if for each ultimately non-zero unary (that is, ℝ → ℝ) function f definable in ℜ there is an ultimately differentiable unary function g definable in ℜ such that limt→+∞[g′(t)/f(t)] = 1- If ℜ is closed under asymptotic integration, then ℜ is o-minimal and defines ex: ℝ → ℝ (Proposition 2).Note that the above definitions make sense for expansions of arbitrary ordered fields.


1994 ◽  
Vol 87 (3) ◽  
pp. 161-170
Author(s):  
James R. Rahn ◽  
Barry A. Berndes

Power functions and exponential functions often describe the relationship between variables in physical phenomena. Power functions are equations of the form y = kxn (see fig. 1), where k is a nonzero real number and n is a nonzero real number not equal to 1. Exponential functions are equations of the form y = kbx (see fig. 2), where k is a nonzero real number and b is a positive real number. Students should be able visually to recognize these functions so that they can easily identify their appearance when experimental data are graphed. When physical phenomena appear to describe exponential and power functions, logarithms can be used to locate approximate functions that represent the phenomena.


The paper describes a method of redistributing the points of the collinear sets in a Desarguesian plane so as to produce a (hybrid) projective plane which is non-Desarguesian. The method is applied to the construction: (i) of a plane over a prescribed subfield of the real field, and (ii) of a plane (over a Galois field) which is proved to be identical with the Hughes plane. On the basis of this construction algebraic relations in the field can be interpreted as incidence relations in the hybrid plane. In order to verify that the planes of type (i) are not isomorphic with Desarguesian planes, some conditions are established which show that all planes of this type (as well as of type (ii)) contain Fano subplanes.


Sign in / Sign up

Export Citation Format

Share Document