Photopolymerizable hydrogels in regenerative medicine and drug delivery

2014 ◽  
pp. 6-28 ◽  
Author(s):  
Rúben F Pereira ◽  
Paulo J Bártolo
RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40206-40214
Author(s):  
Wararat Montha ◽  
Weerakanya Maneeprakorn ◽  
I-Ming Tang ◽  
Weeraphat Pon-On

Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine.


2008 ◽  
Vol 1139 ◽  
Author(s):  
Jeffrey T. Borenstein

AbstractThe emergence of BioMEMS fabrication technologies such as soft lithography, micromolding and assembly of 3D structures, and biodegradable microfluidics, are already making significant contributions to the field of regenerative medicine. Over the past decade, BioMEMS have evolved from early silicon laboratory devices to polymer-based structures and even biodegradable constructs suitable for a range of ex vivo and in vivo applications. These systems are still in the early stages of development, but the long-term potential of the technology promises to enable breakthroughs in health care challenges ranging from the systemic toxicity of drugs to the organ shortage. Ex vivo systems for organ assist applications are emerging for the liver, kidney and lung, and the precision and scalability of BioMEMS fabrication techniques offer the promise of dramatic improvements in device performance and patient outcomes.Ultimately, the greatest benefit from BioMEMS technologies will be realized in applications for implantable devices and systems. Principal advantages include the extreme levels of achievable miniaturization, integration of multiple functions such as delivery, sensing and closed loop control, and the ability of precision microscale and nanoscale features to reproduce the cellular microenvironment to sustain long-term functionality of engineered tissues. Drug delivery systems based on BioMEMS technologies are enabling local, programmable control over drug concentrations and pharmacokinetics for a broad spectrum of conditions and target organs. BioMEMS fabrication methods are also being applied to the development of engineered tissues for applications such as wound healing, microvascular networks and bioartificial organs. Here we review recent progress in BioMEMS-based drug delivery systems, engineered tissue constructs and organ assist devices for a range of ex vivo and in vivo applications in regenerative medicine.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2020 ◽  
Vol 8 (7) ◽  
pp. 481 ◽  
Author(s):  
Tatyana A. Kuznetsova ◽  
Boris G. Andryukov ◽  
Natalia N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Andrey V. Kalinin

The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.


2017 ◽  
Author(s):  
Andrzej Hudecki ◽  
Joanna Gola ◽  
Saeid Ghavami ◽  
Magdalena Skonieczna ◽  
Jarosław Markowski ◽  
...  

We investigated the structure and properties of PCL10 nanofiber, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fibre variants, a 5-10% solution of polycaprolactone (Mw = 70000-90000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibres containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg by using organic acids as solvents is a robust technique. Such way obtained nanofibres may then be used in regenerative medicine for extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) and as carriers of drug delivery nanocapsules. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahyfrofurna (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field.


2008 ◽  
Vol 97 (9) ◽  
pp. 3972-3980 ◽  
Author(s):  
Qingpu Hou ◽  
David Y.S. Chau ◽  
Chayanin Pratoomsoot ◽  
Patrick J. Tighe ◽  
Harminder S. Dua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document