Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery

2019 ◽  
Vol 11 (16) ◽  
pp. 2107-2130 ◽  
Author(s):  
Gustavo Machado das Neves ◽  
Luciano P Kagami ◽  
Itamar L Gonçalves ◽  
Vera L Eifler-Lima

Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.

Author(s):  
Hugo R. Vaca ◽  
Ana M. Celentano ◽  
Natalia Macchiaroli ◽  
Laura Kamenetzky ◽  
Federico Camicia ◽  
...  

2009 ◽  
Vol 51 (5) ◽  
pp. 247-253 ◽  
Author(s):  
José Angelo L. Lindoso ◽  
Ana Angélica B.P. Lindoso

Poverty is intrinsically related to the incidence of Neglected Tropical Diseases (NTDs). The main countries that have the lowest human development indices (HDI) and the highest burdens of NTDs are located in tropical and subtropical regions of the world. Among these countries is Brazil, which is ranked 70th in HDI. Nine out of the ten NTDs established by the World Health Organization (WHO) are present in Brazil. Leishmaniasis, tuberculosis, dengue fever and leprosy are present over almost the entire Brazilian territory. More than 90% of malaria cases occur in the Northern region of the country, and lymphatic filariasis and onchocerciasis occur in outbreaks in a particular region. The North and Northeast regions of Brazil have the lowest HDIs and the highest rates of NTDs. These diseases are considered neglected because there is not important investment in projects for the development of new drugs and vaccines and existing programs to control these diseases are not sufficient. Another problem related to NTDs is co-infection with HIV, which favors the occurrence of severe clinical manifestations and therapeutic failure. In this article, we describe the status of the main NTDs currently occurring in Brazil and relate them to the HDI and poverty.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2602 ◽  
Author(s):  
Joice Castelo Branco Santos ◽  
Jonathas Alves de Melo ◽  
Sweta Maheshwari ◽  
Wendy Marina Toscano Queiroz de Medeiros ◽  
Johny Wysllas de Freitas Oliveira ◽  
...  

Neglected tropical diseases such as Chagas disease and leishmaniasis affect millions of people around the world. Both diseases affect various parts of the globe and drugs traditionally used in therapy against these diseases have limitations, especially with regard to low efficacy and high toxicity. In this context, the class of bisphosphonate-based compounds has made significant advances regarding the chemical synthesis process as well as the pharmacological properties attributed to these compounds. Among this spectrum of pharmacological activity, bisphosphonate compounds with antiparasitic activity stand out, especially in the treatment of Chagas disease and leishmaniasis caused by Trypanosoma cruzi and Leishmania spp., respectively. Some bisphosphonate compounds can inhibit the mevalonate pathway, an essential metabolic pathway, by interfering with the synthesis of ergosterol, a sterol responsible for the growth and viability of these parasites. Therefore, this review aims to present the information about the importance of these compounds as antiparasitic agents and as potential new drugs to treat Chagas disease and leishmaniasis.


2019 ◽  
Vol 62 (3) ◽  
pp. 211-226 ◽  
Author(s):  
Yolanda Freile-Pelegrín ◽  
Deniz Tasdemir

Abstract Neglected tropical diseases (NTDs) are a group of diseases that are predominant in the poorest parts of the world affecting 1.4 billion people. The development of new drugs is urgently needed in order to combat these forgotten diseases. Natural products from marine organisms have been widely explored as a source of new bioactive molecules. However, despite their enormous potential in drug discovery, not even one seaweed-based molecule has entered pre-clinical testing for NTDs. This review gives an overview of the current status of algal natural products against NTDs. The list of compounds is by no means exhaustive, but covers the most important classes of active substances in marine algae against the most studied NTDs.


2019 ◽  
Vol 25 (39) ◽  
pp. 5239-5265 ◽  
Author(s):  
Inês Loureiro ◽  
Joana Faria ◽  
Nuno Santarem ◽  
Terry K. Smith ◽  
Joana Tavares ◽  
...  

The trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp, are causative agents of important human diseases such as African sleeping sickness, Chagas’ disease and Leishmaniasis, respectively. The high impact of these diseases on human health and economy worldwide, the unsatisfactory available chemotherapeutic options and the absence of human effective vaccines, strongly justifies the search for new drugs. The pentose phosphate pathway has been proposed to be a viable strategy to defeat several infectious diseases, including those from trypanosomatids, as it includes an oxidative branch, important in the maintenance of cell redox homeostasis, and a non-oxidative branch in which ribose 5-phosphate and erythrose 4-phosphate, precursors of nucleic acids and aromatic amino acids, are produced. This review provides an overview of the available chemotherapeutic options against these diseases and discusses the potential of genetically validated enzymes from the pentose phosphate pathway of trypanosomatids to be explored as potential drug targets.


2020 ◽  
Vol 27 ◽  
Author(s):  
Kush K. Maheshwari ◽  
Debasish Bandyopadhyay

Background: Neglected tropical diseases (NTDs) affect a huge population of the world and majority of the victims belong to the poor community of the developing countries. Until now, the World Health Organization (WHO) has identified 20 tropical diseases as NTDs that must be addressed with high priority. However, many heterocyclic scaffolds have demonstrated potent therapeutic activity against several NTDs. Objective: There are three major objectives: (1) To discuss the causes, symptoms, and current status of all the 20 NTDs; (2) To explore the available heterocyclic drugs, and their mechanism of actions (if known) that are being used to treat NTDs; (3) To develop general awareness on NTDs among the medicinal/health research community and beyond. Methods: The 20 NTDs have been discussed according to their alphabetic orders along with the possible heterocyclic remedies. Current status of treatment with an emphasis on the heterocyclic drugs (commercially available and investigational) has been outlined. In addition, brief discussion of the impacts of NTDs on socio-economic condition is included. Results: NTDs are often difficult to diagnose and the problem is worsened by the unhealthy hygiene, improper awareness, and inadequate healthcare in the developing countries where these diseases primarily affect poor people. The statistics include duration of suffering, numbers affected, and access to healthcare and medication. The mechanism of actions of various heterocyclic drugs, if reported, have been briefly summarized. Conclusion: Scientists and pharmaceutical corporations should allocate more resources to reveal the in-depth mechanism of actions of many heterocyclic drugs that are currently being used for the treatment of NTDs. Analysis of current heterocyclic compounds and development of new medications can help in the fight to reduce/remove the devastating effects of NTDs. An opinion-based concise review has been presented. Based on available literature, this is the first effect to present all the 20 NTDs and related heterocyclic compounds under the same umbrella.


2019 ◽  
Vol 4 (1) ◽  
pp. 53 ◽  
Author(s):  
Cathyryne Manner ◽  
Katy Graef ◽  
Jennifer Dent

Tropical diseases, including malaria and a group of infections termed neglected tropical diseases (NTDs), pose enormous threats to human health and wellbeing globally. In concert with efforts to broaden access to current treatments, it is also critical to expand research and development (R&D) of new drugs that address therapeutic gaps and concerns associated with existing medications, including emergence of resistance. Limited commercial incentives, particularly compared to products for diseases prevalent in high-income countries, have hindered many pharmaceutical companies from contributing their immense product development know-how and resources to tropical disease R&D. In this article we present WIPO Re:Search, an international initiative co-led by BIO Ventures for Global Health (BVGH) and the World Intellectual Property Organization (WIPO), as an innovative and impactful public-private partnership model that promotes cross-sector intellectual property sharing and R&D to accelerate tropical disease drug discovery and development. Importantly, WIPO Re:Search also drives progress toward the United Nations Sustainable Development Goals (SDGs). Through case studies, we illustrate how WIPO Re:Search empowers high-quality tropical disease drug discovery researchers from academic/non-profit organizations and small companies (including scientists in low- and middle-income countries) to leapfrog their R&D programs by accessing pharmaceutical industry resources that may not otherwise be available to them.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Kathleen Horlock-Roberts ◽  
Chase Reaume ◽  
Guillem Dayer ◽  
Christine Ouellet ◽  
Nicholas Cook ◽  
...  

ABSTRACT Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission. Giardia intestinalis is a protozoan parasite that causes giardiasis, a form of severe and infectious diarrhea. Despite the importance of the cell cycle in the control of proliferation and differentiation during a giardia infection, it has been difficult to study this process due to the absence of a synchronization procedure that would not induce cellular damage resulting in artifacts. We utilized counterflow centrifugal elutriation (CCE), a size-based separation technique, to successfully obtain fractions of giardia cultures enriched in G1, S, and G2. Unlike drug-induced synchronization of giardia cultures, CCE did not induce double-stranded DNA damage or endoreplication. We observed increases in the appearance and size of the median body in the cells from elutriation fractions corresponding to the progression of the cell cycle from early G1 to late G2. Consequently, CCE could be used to examine the dynamics of the median body and other structures and organelles in the giardia cell cycle. For the cell cycle gene expression studies, the actin-related gene was identified by the program geNorm as the most suitable normalizer for reverse transcription-quantitative PCR (RT-qPCR) analysis of the CCE samples. Ten of 11 suspected cell cycle-regulated genes in the CCE fractions have expression profiles in giardia that resemble those of higher eukaryotes. However, the RNA levels of these genes during the cell cycle differ less than 4-fold to 5-fold, which might indicate that large changes in gene expression are not required by giardia to regulate the cell cycle. IMPORTANCE Giardias are among the most commonly reported intestinal protozoa in the world, with infections seen in humans and over 40 species of animals. The life cycle of giardia alternates between the motile trophozoite and the infectious cyst. The regulation of the cell cycle controls the proliferation of giardia trophozoites during an active infection and contains the restriction point for the differentiation of trophozoite to cyst. Here, we developed counterflow centrifugal elutriation as a drug-free method to obtain fractions of giardia cultures enriched in cells from the G1, S, and G2 stages of the cell cycle. Analysis of these fractions showed that the cells do not show side effects associated with the drugs used for synchronization of giardia cultures. Therefore, counterflow centrifugal elutriation would advance studies on key regulatory events during the giardia cell cycle and identify potential drug targets to block giardia proliferation and transmission.


2016 ◽  
Vol 27 (5) ◽  
pp. 739-743 ◽  
Author(s):  
William Sullivan

The World Health Organization lists a constellation of 17 tropical diseases that afflict approximately one in six individuals on the planet and, until recently, few resources have been devoted to the treatment and eradication of those diseases. They are often referred to as the diseases of the “bottom billion,” because they are most prevalent among the poorest individuals in impoverished tropical nations. However, the few studies that have been performed reveal an extraordinary world of molecular and cellular adaptations that facilitate the pathogens’ survival in hosts ranging from insects to humans. A compelling case can be made that even a modest investment toward understanding the basic molecular and cell biology of these neglected pathogens has a high probability of yielding exciting new cellular mechanisms and insights into novel ways of combating these diseases.


Sign in / Sign up

Export Citation Format

Share Document