Thiosemicarbazonate complexes with affinity for amyloid-β fibers: synthesis, characterization and biological studies

2019 ◽  
Vol 11 (19) ◽  
pp. 2527-2546 ◽  
Author(s):  
Arantxa Pino-Cuevas ◽  
Paula D Raposinho ◽  
Célia Fernandes ◽  
António Paulo ◽  
Ulrich Abram ◽  
...  

Aim: Obtain radioimages of amyloid-β fibers using 99mTc-complexes. Methodology: Tridentate thiosemicarbazone and thiocarbonohydrazone ligands containing fragments (stilbene, azobenzene, benzothiazole or benzoxazole) with affinity for amyloid-ß fibers and its Re(I) complexes have been prepared. The molecular structures of several ligands and complexes were determined by x-ray diffraction. Binding affinity studies toward Aß1-42 fibers were performed for the ligands and Re(I) complexes. The ability of formation of some 99mTc(I) complexes, their biodistribution and in vivo stability have been established. Results & conclusion: Complexes of stilbene and benzothiazole thiosemicarbazonates show similar affinity for amyloid-β fibers to the free ligand. These 99mTc complexes present a reasonable in vivo stability and a low capability to cross the blood–brain barrier although not sufficient to brain amyloid imaging.

1985 ◽  
Vol 63 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
John F. Richardson ◽  
Ted S. Sorensen

The molecular structures of exo-7-methylbicyclo[3.3.1]nonan-3-one, 3, and the endo-7-methyl isomer, 4, have been determined using X-ray-diffraction techniques. Compound 3 crystallizes in the space group [Formula: see text] with a = 15.115(1), c = 7.677(2) Å, and Z = 8 while 4 crystallizes in the space group P21 with a = 6.446(1), b = 7.831(1), c = 8.414(2) Å, β = 94.42(2)°, and Z = 2. The structures were solved by direct methods and refined to final agreement factors of R = 0.041 and R = 0.034 for 3 and 4 respectively. Compound 3 exists in a chair–chair conformation and there is no significant flattening of the chair rings. However, in 4, the non-ketone ring is forced into a boat conformation. These results are significant in interpreting what conformations may be present in the related sp2-hybridized carbocations.


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


2012 ◽  
Vol 68 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Kohei Johmoto ◽  
Takashi Ishida ◽  
Akiko Sekine ◽  
Hidehiro Uekusa ◽  
Yuji Ohashi

The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


Author(s):  
Haiming Zhou ◽  
Jing Zhang ◽  
Xiaoqing Chen ◽  
Shili Guo ◽  
Huimei Lin ◽  
...  

Background and Objective: Beauvericin (BEA), a cyclic hexadepsipeptide mycotoxin, is a potent inhibitor of the acyl-CoA: cholesterol acyltransferase enzyme 1 (ACAT1) which involved in multiple tumor-correlated pathways. However, the binding mechanisms between BEA and ACAT1 were not elucidated. Methods: BEA was purified from a mangrove entophytic Fusarium sp. KL11. Single-crystal X-ray diffraction was used to determine the structure of BEA. Wound healing assays of BEA against KB cell line and MDA-MB-231 cell line were evaluated. Inhibitory potency of BEA against ACAT1 was determined by ELISA assays. Molecular docking was carried out to illuminate the bonding mechanism between BEA and ACAT1. Results: The structure of BEA was confirmed by X-ray diffraction, indicating a monoclinic crystal system with P21 space group (α = 90°, β = 92.2216(9)o, γ= 90o). BEA displayed migration-inhibitory activities against KB cells and MDA-MB-231 cells in vitro. ELISA assays revealed the protein expression level of ACAT1 in KB cells was significantly decreased after BEA treatment (P <0.05). Molecular docking demonstrated that BEA formed hydrogen bond with His425 and pi-pi staking with Tyr429 in ACAT1. Conclusions: BEA sufficiently inhibited the proliferation and migration of KB cells and MDA-MB-231 cells by downregulating ACAT1 expression. In addition, BEA potentially possessed a strong binding affinity with ACAT1. BEA may serve as a potential lead compound for the development of a new ACAT1-targeted anticancer drug.


1986 ◽  
Vol 250 (2) ◽  
pp. F302-F307 ◽  
Author(s):  
J. M. Burnell ◽  
C. Liu ◽  
A. G. Miller ◽  
E. Teubner

To study the effects of bicarbonate and magnesium on bone, mild acidosis and/or hypermagnesemia were produced in growing rats by feeding ammonium chloride and/or magnesium sulfate. Bone composition, quantitative histomorphometry, and mineral x-ray diffraction (XRD) characteristics were measured after 6 wk of treatment. The results demonstrated that both acidosis (decreased HCO3) and hypermagnesemia inhibited periosteal bone formation, and, when combined, results were summative; and the previously observed in vitro role of HCO3- and Mg2+ as inhibitors of crystal growth were confirmed in vivo. XRD measurements demonstrated that decreased plasma HCO3 resulted in larger crystals and increased Mg resulted in smaller crystals. However, the combined XRD effects of acidosis and hypermagnesemia resembled acidosis alone. It is postulated that the final composition and crystal structure of bone are strongly influenced by HCO3- and Mg2+, and the effects are mediated by the combined influence on both osteoblastic bone formation and the growth of hydroxyapatite.


2018 ◽  
Vol 73 (8) ◽  
pp. 601-609 ◽  
Author(s):  
Bei Wang ◽  
Pei-Zhi Zhang ◽  
Xin Chen ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractA series of guanidinium chloride derivatives have been synthesized by condensation of 1,3-diaminoguanidine monohydrochloride with heteroaromatic formaldehydes in good yields. All compounds were characterized by nuclear magnetic resonances and infrared spectroscopies, and the molecular structures of four compounds were determined by single crystal X-ray diffraction. The optical properties of these guanidinium chloride derivatives with fluoride anions were investigated, showing selective color changes from colorless to yellow or orange, red-shifted in the ultraviolet/visible absorption spectra.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mareike C. Jahnke ◽  
F. Ekkehardt Hahn

Abstract The reactions of N-alkyl-N′-picolyl-benzimidazolium bromides or N,N′-dipicolyl-benzimidazolium bromide with silver oxide yielded the silver dicarbene complexes of the type [Ag(NHC)2][AgBr2] 1–4 (NHC = picoline-functionalized benzimidazolin-2-ylidene). The silver complexes 1–4 have been used in carbene transfer reactions to yield the gold(I) complexes of the type [AuCl(NHC)] 5–8 in good yields. A halide exchange at the metal center of complexes 5–8 with lithium bromide yielded the gold bromide complexes 9–12. Finally, the oxidation of the gold(I) centers in complexes 9–12 with elemental bromine gave the gold(III) complexes of the type [AuBr3(NHC)] 13–16. Molecular structures of selected Au(I) and Au(III) complexes have been determined by X-ray diffraction studies.


Sign in / Sign up

Export Citation Format

Share Document