BLOOD GLUCOSE MONITORING TECHNOLOGY: TRANSLATING DATA INTO PRACTICE

2004 ◽  
Vol 10 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Irl B. Hirsch
Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 136-OR
Author(s):  
MERYEM K. TALBO ◽  
VIRGINIE MESSIER ◽  
KATHERINE DESJARDINS ◽  
RÉMI RABASA-LHORET ◽  
ANNE-SOPHIE BRAZEAU ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6925
Author(s):  
Liu Tang ◽  
Shwu Jen Chang ◽  
Ching-Jung Chen ◽  
Jen-Tsai Liu

In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 941-P
Author(s):  
LEI ZHANG ◽  
YAN GU ◽  
YUXIU YANG ◽  
NA WANG ◽  
WEIGUO GAO ◽  
...  

2021 ◽  
pp. 193229682110071
Author(s):  
Loukia Spanou ◽  
Konstantinos Makris

In this issue of Journal of Diabetes Science and Technology, Baumstark et al. evaluated the analytical performance of a bench-top laboratory glucose analyzer (SUPER-GL) intended for replacement for the YSI2300-STAT analyzer, that served for several decades as a comparator method in clinical and analytical studies of blood glucose monitoring systems (BGMS). The authors concluded that the SUPER-GL’s overall performance is comparable to that of YSI2300-STAT, and has the potential to be a candidate comparator analyzer. However, the question is if we need to recommend as a “comparator method,” a specific device, that measure glucose using the same analytical method with most BGMS. In this analysis we present our point of view hoping to generate a discussion on the necessity for such a replacement.


Sign in / Sign up

Export Citation Format

Share Document