scholarly journals A G2/M Cell Cycle Block in Transformed Cells by Contact with Normal Neighbours

Cell Cycle ◽  
2003 ◽  
Vol 2 (5) ◽  
pp. 482-485 ◽  
Author(s):  
David Allard ◽  
Michael Stoker ◽  
Ermanno Gherardi
2012 ◽  
Vol 130 (3) ◽  
pp. 493-500 ◽  
Author(s):  
Sergio Gómez-Alonso ◽  
Vanessa J. Collins ◽  
David Vauzour ◽  
Ana Rodríguez-Mateos ◽  
Giulia Corona ◽  
...  

Toxicon ◽  
2004 ◽  
Vol 43 (7) ◽  
pp. 841-846 ◽  
Author(s):  
John W Brown ◽  
Steven Cappell ◽  
Carlos Perez-Stable ◽  
Lawrence M Fishman

2020 ◽  
Vol 20 (6) ◽  
pp. 734-750
Author(s):  
Wallax A.S. Ferreira ◽  
Rommel R. Burbano ◽  
Claudia do Ó. Pessoa ◽  
Maria L. Harada ◽  
Bárbara do Nascimento Borges ◽  
...  

Background: Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. Objective: This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. Methods: The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). Results: Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. Conclusions: It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.


2014 ◽  
Vol 77 (7) ◽  
pp. 1753-1757 ◽  
Author(s):  
Lin Du ◽  
April L. Risinger ◽  
Jarrod B. King ◽  
Douglas R. Powell ◽  
Robert H. Cichewicz

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii306-iii307
Author(s):  
Natasha Pillay Smiley ◽  
Patricia Baxter ◽  
Shiva Kumar ◽  
Eugene Hwang ◽  
John Breneman ◽  
...  

Abstract BACKGROUND BMI-1 is highly expressed in DIPG. Downregulation leads to inhibition of cell proliferation, cell cycle signaling, self-renewal, telomerase expression, activity, and suppression of DIPG cell migration. Targeted inhibition of BMI-1 sensitizes DIPG cells to radiation and drug-induced DNA damage. PTC596 (formulated by PTC Therapeutics, Inc.) is a novel, orally available drug that inhibits microtubule polymerization, resulting in G2/M cell cycle arrest and post-translational modification of BMI-1 protein and reduced BMI-1 protein levels. OBJECTIVES: To estimate the maximum tolerated dose and describe dose limiting toxicities, pharmacokinetics and pharmacodynamics of PTC596 in children 3–21 years of age with newly diagnosed diffuse intrinsic pontine glioma and high-grade gliomas. METHODS PTC596 is administered twice per week orally during radiotherapy and as maintenance for up to two years. The starting dose of PTC596 was 200 mg/m2, with a subsequent dose level of 260mg/m2/dose. Pharmacokinetics are performed in Cycles 1 and 2. RESULTS This study is currently ongoing. Nine patients (7 with DIPG, 2 with HGG), 8 evaluable, have been enrolled. At dose level 1, 200 mg/m2, three evaluable patients were enrolled and experienced no DLTs. At dose level 2, among 5 evaluable patients, 2 experienced dose-limiting grade 4 neutropenia. PTC596 has been otherwise well tolerated. Five patients remain in Cycles 2–11. CONCLUSION This phase I trial is ongoing. PTC596 is tolerable at dose level 1. We are amending the protocol to introduce tablets that can be dissolved in liquid to allow enrollment of younger patients and those unable to swallow whole tablets.


Sign in / Sign up

Export Citation Format

Share Document