scholarly journals The Role of Plasmacytoid and Myeloid Dendritic Cells in Induction of Asthma in a Mouse Model and the Effect of a TLR9 Agonist on Dendritic Cells

2011 ◽  
Vol 3 (3) ◽  
pp. 199 ◽  
Author(s):  
Ji-Hun Mo ◽  
Young-Jun Chung ◽  
Tomoko Hayashi ◽  
Jongdae Lee ◽  
Eyal Raz
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chunyan Liu ◽  
Mengying Zheng ◽  
Ting Wang ◽  
Huijuan Jiang ◽  
Rong Fu ◽  
...  

Severe aplastic anemia (SAA) is an autoimmune disease in which bone marrow failure is mediated by activated myeloid dendritic cells (mDCs) and T lymphocytes. Recent research has identified a strong immunomodulatory effect of pyruvate kinase M2 (PKM2) on dendritic cells in immune-mediated diseases. In this study, we aimed to explore the role of PKM2 in the activation of mDCs in SAA. We observed conspicuously higher levels of PKM2 in mDCs from SAA patients compared to normal controls at both the gene and protein levels. Concurrently, we unexpectedly discovered that after the mDC-specific downregulation of PKM2, mDCs from patients with SAA exhibited weakened phagocytic activity and significantly decreased and shortened dendrites relative to their counterparts from normal controls. The expression levels of the costimulatory molecules CD86 and CD80 were also reduced on mDCs. Our results also suggested that PKM2 knockdown in mDCs reduced the abilities of these cells to promote the activation of CD8+ T cells (CTLs), leading to the decreased secretion of cytotoxic factors by the latter cell type. These findings demonstrate that mDC activation requires an elevated intrinsic PKM2 level and that PKM2 improves the immune status of patients with SAA by enhancing the functions of mDCs and, consequently, CTLs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2319-2319
Author(s):  
Teerawit Supakorndej ◽  
Mahil Rao ◽  
Daniel Link

Abstract Abstract 2319 Granulocyte-colony stimulating factor (G-CSF) is the prototypic agent used to mobilize hematopoietic stem and progenitor cells (HSPCs) into the blood where they can then be harvested for stem cell transplantation. G-CSF acts in a non-cell-intrinsic fashion to induce HSPC mobilization. We recently showed that G-CSF signaling in a CD68+ monocyte/macrophage lineage cell within the bone marrow initiates the HSPC mobilization cascade (Christopher et al., 2011). Consistent with this finding, two other groups showed that ablation of monocytes/macrophages induces HSPC mobilization (Winkler et al., 2010; Chow et al., 2011). CD68 marks a heterogeneous cell population that includes monocytes, macrophages, myeloid dendritic cells, and osteoclasts. To further define the relevant cell population(s) for HSPC mobilization by G-CSF, we first examined the role of osteoclasts. Receptor activator of NF-kappaB (RANK) signaling is required for osteoclast development. Osteoprotegerin (OPG) is a decoy receptor for RANK ligand, and treatment with OPG-Fc (a stabilized form of OPG) results in osteoclast ablation in mice. We treated mice with 100 μg of OPG-Fc and documented complete osteoclast ablation by histomorphometry. Osteoclast ablation did not result in constitutive HSPC mobilization, nor did it affect G-CSF-induced HSPC mobilization. To further assess the role of osteoclasts, we transplanted RANK−/− fetal liver cells into irradiated Csf3r−/− (G-CSF receptor deficient) recipients. Since RANK is required for osteoclast development, the osteoclasts in these bone marrow chimeras lack the G-CSFR, while other hematopoietic cells (including monocytes/macrophages) are G-CSFR sufficient. Again, G-CSF-induced HSPC mobilization in these mice was normal. Based on these data, we conclude that osteoclasts are dispensable for HSPC mobilization by G-CSF. We next quantified changes in monocytic/macrophage cell populations in the bone marrow after G-CSF treatment (250 μg/kg per day for 5 days) using a novel multi-color flow cytometry assay that includes CD115, F4/80, MHC class II, Gr-1, B220, and CD11c. Using this assay, we observed a significant decrease in macrophages (11.8 ± 3.6-fold) and, surprisingly, myeloid dendritic cells (MDCs; 5.5 ± 1.2-fold) in the bone marrow with G-CSF treatment. To further assess the role of MDCs, we used transgenic mice expressing the diphtheria toxin receptor under the control of the CD11c promoter (CD11c-DTR) to conditionally ablate MDCs. To avoid systemic toxicity, we transplanted CD11c-DTR bone marrow into congenic wild type recipients prior to MDC ablation. The resulting bone marrow chimeras were treated with diphtheria toxin (DT; 400 ng per day for 6 days), which resulted in a 92% reduction in MDCs. Ablation of MDCs resulted in a significant increase in colony-forming cells in the blood and spleen (figure 1A). Moreover, MDC ablation significantly increased mobilization of colony-forming cells and c-Kit+lineage−Sca-1+ (KLS) cells by G-CSF (figures 1B and 1C). Taken together, these data suggest that myeloid dendritic cells, but not osteoclasts, contribute to HSPC mobilization by G-CSF. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Figure 1. HSPC mobilization in CD11c-DTR mice. CD11c-DTR bone marrow chimeras were treated with diphtheria toxin (DT) alone, G-CSF alone, or DT plus G-CSF. The number of CFU-C (A & B) or KLS cells (C) in the blood and spleen are shown. Data represent the mean ± SEM of 10–11 mice pooled from two independent experiments. *p < 0.05; **p < 0.001; ***p < 0.0001. Disclosures: No relevant conflicts of interest to declare.


Immunology ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 670-678 ◽  
Author(s):  
Li Ma ◽  
Yun Zhou ◽  
Ying Zhang ◽  
Yuan Li ◽  
Yonghong Guo ◽  
...  

2016 ◽  
Vol 2 (1) ◽  
pp. 30
Author(s):  
Dorothée Cammarata ◽  
Abduelhakem Ben Addi ◽  
Eva D’Amico ◽  
Bernard Robaye

Numerous studies have demonstrated the role of uridine diphosphate (UDP) and its P2Y6 receptor in the inflammatory reaction and innate immunity. However, the importance of the P2Y6 receptor in the adaptive immune response remains unclear. In this study, we demonstrate that the P2Y6 receptor is functionally expressed in murine bone marrow dendritic cells (BMDC). UDP induced a Ca2+ transient in these cells that was decreased in P2Y6-deficient mice. UDP also increased the endocytosis of fluorescein isothiocyanate-dextran (FITC-dextran) and amplified the secretion of interleukin 12-p70 (IL-12p70) induced by CpG; these responses were abolished in P2Y6-deficient mice. In vivo experiments showed that the serum level of specific IgG2c after immunisation with ovalbumin was decreased in P2Y6-deficient mice, while the level of specific IgG1 was unchanged. These data suggest that the P2Y6-mediated effects of UDP on myeloid dendritic cells play a role in the in vivo Th1 skewing of the immune response.


2016 ◽  
Vol 252 ◽  
pp. e176
Author(s):  
A. Karpov ◽  
A. Rvatcheva ◽  
M. Shogenova ◽  
R. Zhetisheva ◽  
V. Masenko ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Alex KleinJan ◽  
Menno van Nimwegen ◽  
Karolina Leman ◽  
Ke-xin Wen ◽  
Louis Boon ◽  
...  

Rationale. Sarcoidosis is a systemic inflammatory disorder characterized by the presence of granulomas in various organs, most commonly in the lungs. Although the ethology is unknown, sarcoidosis is thought to be mediated by T helper (Th)1 and Th17 lymphocytes. Chronic airway exposure to beryllium metal leads to chronic beryllium disease (CBD), which shares similarities with pulmonary sarcoidosis. Objective. To study airway pathophysiology and the role of dendritic cells (DCs) and IL-17 receptor (IL-17R) signals in a mouse model for CBD. Methods. Here, we present a CBD mouse model in which mice were exposed to beryllium during three weeks. We also exposed IL-17R-deficient mice and mice in which DCs were depleted. Results. Eight weeks after the initial beryllium exposure, an inflammatory response was detected in the lungs. Mice displayed inflammation of the lower airways that included focal dense infiltrates, granuloma-like foci, and tertiary lymphoid structure (TLS) containing T cells, B cells, and germinal centers. Alveolar cell analysis showed significantly increased numbers of CD4+ T cells expressing IFNγ, IL-17, or both cytokines. The pathogenic role of IL-17R signals was demonstrated in IL-17R-deficient mice, which had strongly reduced lung inflammation and TLS development following beryllium exposure. In CBD mice, pulmonary DC subsets including CD103+ conventional DCs (cDCs), CD11b+ cDCs, and monocyte-derived DCs (moDCs) were also prominently increased. We used diphtheria toxin receptor-mediated targeted cell ablation to conditionally deplete DCs and found that DCs are essential for the maintenance of TLS in CBD. Furthermore, the presence of antinuclear autoantibodies in the serum of CBD mice showed that CBD had characteristics of autoimmune disease. Conclusions. We generated a translational model of sarcoidosis driven by beryllium and show that DCs and IL-17R signals play a pathophysiological role in CBD development as well as in established CBD in vivo.


2010 ◽  
Vol 84 (18) ◽  
pp. 9463-9471 ◽  
Author(s):  
Jinghe Huang ◽  
Patrick S. Burke ◽  
Thai Duong Hong Cung ◽  
Florencia Pereyra ◽  
Ildiko Toth ◽  
...  

ABSTRACT Elite controllers maintain undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, but the correlates of immune protection in this patient population are ill defined. Here, we demonstrate that in comparison to patients with progressive HIV-1 infection or healthy persons not infected with HIV-1, elite controllers have circulating myeloid dendritic cells with significantly increased antigen-presenting properties, while their ability to secrete proinflammatory cytokines is substantially diminished. This unique functional profile is associated with a distinct surface expression pattern of immunomodulatory leukocyte-immunoglobulin-like receptors (LILR) and a strong and selective upregulation of LILRB1 and LILRB3. Blockade of these two receptors by monoclonal antibodies or short interfering RNA (siRNA) abrogated the specific antigen-presenting properties of dendritic cells, implying an important regulatory role of these molecules. These data reveal previously unrecognized innate components of immune protection against HIV-1 in elite controllers and offer novel perspectives for the manipulation of host immunity for the prevention and treatment of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document