Effect of Seed Treatment on Seed Germination and Seedling Growth Attributes of Yeheb (Cordeauxia edulis) with In-Vitro Conditions

2015 ◽  
Vol 05 (02) ◽  
Author(s):  
Chanie Derso Tileye Feyissa
2021 ◽  
Vol 8 (01) ◽  
Author(s):  
KAMLESH RAM ◽  
RAMESH SINGH

In Vitro and In Vivo studies on the efficacy of fungicides and biopesticides. Among the fungicides, in Carbedazim to the most effective as they have inhibited the mycelia growth completely of the test fungus, and Benomyl, Topsin - M, Ridomil,Vitavax were found the next best in inhibiting the mycelial growth of the pathogen up to 92.11% to 83.46% respectively. Sadabahar was least effective plant extracts which causes 42 mm of radial growth and inhibited the growth of the only 19.23%. In Vivo condition the maximum seed germination (95.50% and 95.33%), minimum wilt incidence (5.16% and 3.65%) and highest grain yield (10.50 q/ha and 10.35 q/ha) was found seed treatment with Carbendazim (0.2%). Among the test plant extracts Tulsi was lested effective, which show the minimum seed germination (80.00% and 77.50%), maximum wilt incidence (15.70% and 14.10%), and lowest grain yield (3.92 q/ha and 4.17 q/ha).


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2784 ◽  
Author(s):  
Alicja Tymoszuk ◽  
Jacek Wojnarowicz

Zinc oxide nanoparticles (ZnO NPs) are ones of the most commonly manufactured nanomaterials worldwide. They can be used as a zinc fertilizer in agriculture to enhance yielding and to control the occurrence of diseases thanks to its broad antifungal and antibacterial action. The aim of this study was to investigate and compare the effects of ZnO submicron particles (ZnO SMPs) and ZnO NPs on the process of in vitro seed germination and seedling growth in onion (Allium cepa L. ‘Sochaczewska’), and to indicate the potential use of these compounds in onion production. In the experiment, disinfected seeds were inoculated on the modified Murashige and Skoog (MS) medium and poured with ZnO SMP or ZnO NP water suspension, at the concentrations of 50, 100, 200, 400, 800, 1600, and 3200 mg∙L−1. During three successive weeks, the germinating seeds were counted. Germination started most often on the second or third day of in vitro culture. The highest share of germination was recorded for seeds treated with 800 mg∙L−1 ZnO SMPs and ZnO NPs (52% and 56%, respectively). After the application of ZnO SMPs and ZnO NPs at the highest tested concentration (3200 mg∙L−1), the share of germinating seeds was only 19% and 11%, respectively. Interestingly, seedlings obtained from control seeds and seeds treated with ZnO SMPs and ZnO NPs did not differ statistically in terms of length, fresh weight, and dry weight of leaves, and roots. Both ZnO SMPs and ZnO NPs, in the concentration range from 50 to 1600 mg∙L−1, can be used to stimulate the germination process of onion seeds, without negative effects on the further growth and development of seedlings. There were no differences found between the action of ZnO NPs and ZnO SMPs, which suggested that the most important factor influencing seed germination was in fact the concentration of zinc ions, not the particle size.


Botany ◽  
2020 ◽  
Vol 98 (5) ◽  
pp. 273-281
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Mejda Abassi ◽  
Zoubeir Béjaoui

Biodiversity has been confronted with anthropogenic threats and several natural threats such as biological invasions. The success of these invasions involves phytotoxic products released by invasive plants that can exhibit allelopathic effects on target species. Thus, aqueous extracts from different parts of the Mediterranean yellow star-thistle [Centaurea solstitialis subsp. schouwii (DC.) Gugler], were tested for their allelopathic effects on seed germination and seedling growth of Sulla coronaria (L.). Bioassays were conducted in vitro to test the effects of the aqueous extracts of shoot, basal and root parts of C. solstitialis subsp. schouwii at two different concentrations (50 g·L−1 and 10 g·L−1). The concentrations of total polyphenols, flavonoids, and tannins of the extracts were also evaluated. Our results showed inhibitory effects on the germination and seedling growth of S. coronaria seedlings, particularly with the extract form the basal part, reaching 84%. This study confirms the linear relationships between the allelopathic effects of C. solstitialis subsp. schouwii and the polyphenol and flavonoid contents. However, further experiments are needed under field conditions to confirm the results obtained under laboratory conditions.


2016 ◽  
Vol 162-163 ◽  
pp. 129-133 ◽  
Author(s):  
Ramazan Beyaz ◽  
Cansu Telci Kahramanogullari ◽  
Cigdem Yildiz ◽  
E. Selcen Darcin ◽  
Mustafa Yildiz

Author(s):  
Amit Kumar Tiwari ◽  
Prawal P.S. Verma ◽  
Dipender Kumar ◽  
Sonveer Singh ◽  
Rakesh Kumar ◽  
...  

Background: Sarpagandha is an indigenous medicinal herb of Indian continent. It has many medicinal properties. Due to increasing demand of Sarpagandha, its exploitation is increasing continuously but for lack of cultivation, this plant has been listed in endangered category. Commercially, it is propagated through seeds but the main barrier of seed propagation is its irregular and low germination. Hence, the current study was undertaken to study the effect of growing media and seed treatment methods on seed germination and seedling growth of Sarpagandha to eliminate the inhibitory effect of the hard stony endocarp.Methods: Seed germination and seedling growth experiments of Sarpagandha were carried out with following different seed treatments, T1 (Control), T2 (Water soaking for 24 hours), T3 (water soaking for 48 hours), T4 (Water soaking for 24 hours + cotton cloth wrapping for 24 hours), T5 (GA3 200 ppm), T6 (FYM treatment for 24 hours), T7 (FYM treatment for 48 hours), T8 (Hot water treatment) and T9 (Cow dung treatment for 24 hours). Experiment was laid out in CRD. The data recorded on the various parameters were analyzed at 5% level of significance by using ANOVA.Result: Results indicated highest germination percentage (51), lowest mortality percent (49), minimum days for initiation of germination (23), minimum days taken for germination completion (33), highest speed of germination (3.77), maximum vigour index (1441.44), highest root (11.27 cm) and highest shoot length (17 cm) in T5 (GA3 200 ppm) followed by T3 (water soaking for 48 hours). Indicating, T5 (GA3 200 ppm) to be best seed treatment for higher germination and subsequent seedling growth of Sarpagandha (Rauvolfia serpentine L.).


HortScience ◽  
2003 ◽  
Vol 38 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Kimberly A. Pickens ◽  
James M. Affolter ◽  
Hazel Y. Wetzstein ◽  
Jan H.D. Wolf

Tillandsia eizii is an epiphytic bromeliad that due to over-collection, habitat destruction, and physiological constraints has declined to near threatened status. This species exhibits high mortality in the wild, and seed are characterized by low percentages of germination. As a means to conserve this species, in vitro culture protocols were developed to enhance seed germination and seedling growth. A sterilization protocol using 70% ethanol for 2 minutes followed by 2.6% NaOCl for 40 minutes disinfested seed and promoted seedling growth. Sucrose incorporated into the culture medium had no effect on germination or growth, while NAA inhibited growth, but not germination. Cultures maintained under a 16-hour photoperiod at 22 °C exhibited greater growth than those grown at 30 °C. Seed that germinated in the dark remained etiolated and failed to develop even after transfer to light conditions. Plants grown in vitro were successfully acclimatized and transferred to the greenhouse. Over 86% survival and rapid growth were obtained with either an all-pine-bark medium, or a mixture of 2 redwood bark: 2 fir bark: 2 potting mix: 1 perlite. This demonstrated that in vitro culture of seed may be used to rapidly produce large numbers of T. eizii, and thus can be used for the conservation and reintroduction of this species.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1004 ◽  
Author(s):  
Brenda Sánchez-Montesinos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Francisco J. Gea ◽  
Mila Santos

The main objective of this study was to determine the capacity of Trichoderma aggressivum f. europaeum to promote pepper and tomato seedling growth compared to that of T. saturnisporum, a species recently characterised as a biostimulant. Consequently, in vitro seed germination and seedling growth tests were performed under commercial plant nursery conditions. Additionally, the effects of different doses and a mixture of both species on seedling growth under plant nursery and subsequently under greenhouse conditions were determined. Furthermore, mass production of spores was determined in different substrates, and their siderophore and indole acetic acid production and phosphate (P) solubilisation capacity were also determined. Direct application of Trichoderma aggressivum f. europaeum to seeds in vitro neither increases the percentage of pepper and tomato seed germination nor improves their vigour index. However, substrate irrigation using different doses under commercial plant nursery conditions increases the quality of tomato and pepper seedlings. Tomato roots increased by 66.66% at doses of 106 spores per plant. Applying T. aggressivum f. europaeum or T. saturnisporum under plant nursery conditions added value to seedlings because their growth-promoting effect is maintained under greenhouse conditions up to three months after transplantation. The combined application of the two species had no beneficial effect in relation to that of the control. The present study demonstrates the biostimulant capacity of T. aggressivum f. europaeum in pepper and tomato plants under commercial plant nursery and greenhouse conditions.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 63-68 ◽  
Author(s):  
M. Babadoost ◽  
S. Z. Islam

Apron XL LS (mefenoxam) and Allegiance FL (metalaxyl) were highly inhibitory to growth of mycelium of Phytophthora capsici in vitro. Effective dose (ED50) of mefenoxam and metalaxyl for 50% inhibition of mycelial growth, for all five isolates of P. capsici tested, was 0.98 and 0.99 μg a.i./ml of culture medium, respectively. For mefenoxam at 200 μg a.i./ml, sporangium and zoospore germination were reduced by 92 and 96%, respectively, and 21 and 24%, respectively, for metalaxyl. In greenhouse studies, seed treatment with mefenoxam (0.42 ml of Apron XL LS/kg of seed) and metalaxyl (0.98 ml of Allegiance FL/kg of seed) significantly reduced pre- and post-emergence damping-off of seedlings caused by P. capsici in three pumpkin cultivars (Dickinson, Hybrid-401, and Hybrid-698) tested. Thirty-one days after seeding, at inoculum levels of 0, 90, 600, 1,400, and 4,000 CFU/g of soil, the average seedling stands for mefenoxam treatment were 98.4, 93.8, 88.3, 77.8, and 64.8%; for metalaxyl, 99.1, 85.3, 85.8, 73.5, and 59.3; and for the untreated control, 97.5, 55.2, 45.7, 37.0, and 22.9%, respectively. In field trials, the average seedling stands 35 days after seeding were 76.7, 74.7, and 44.9% for mefenoxam, metalaxyl, and untreated control, respectively. Seed treatment with mefenoxam or metalaxyl did not have any significant effect on either seed germination or seedling vigor.


Sign in / Sign up

Export Citation Format

Share Document