Incorporating Submerged MBR in Conventional Activated Sludge Process for Municipal Wastewater Treatment: A Feasibility and Performance Assessment

Author(s):  
Khum Gurung ◽  
Mohamed Chaker Ncibi ◽  
Jean Marie Fontmorin
Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2008 ◽  
Vol 58 (4) ◽  
pp. 953-956 ◽  
Author(s):  
L. Balest ◽  
G. Mascolo ◽  
C. Di Iaconi ◽  
A. Lopez

The removal of selected endocrine disrupter compounds (EDCs), namely estrone(E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-octylphenol (4t-OP) from municipal wastewater was investigated using a sequencing batch biofilter granular reactor (SBBGR), a new system for biological treatment based on aerobic granular biomass. This new biological treatment is characterized by high biomass concentration (up to 40 g/L), high sludge retention times (up to 6 months) and low sludge production (i.e., an order of magnitude lower than commonly reported for conventional biological technologies). The investigation was carried out comparing a demonstration SBBGR system with a conventional full-scale activated sludge process. Results showed that the SBBGR performed better than a conventional activated sludge process in removing E1, E2, BPA and 4t-OP. In fact, the average removal percentages of the above mentioned EDCs, obtained during a four month operating period, were 62.2, 68, 91.8, 77.9% and 56.4, 36.3, 71.3, 64.6% for the demonstrative SBBGR system and the conventional activated sludge process of the municipal sewage treatment plant, respectively


2014 ◽  
Vol 8 (1) ◽  
pp. 25-29
Author(s):  
Alaa K. Mohammed ◽  
Qusay Fathel ◽  
Safaa A. Ali

A membrane bioreactor (MBR) is one of the modifications to the conventional activated sludge process, since it is the combination of a membrane module and a bioreactor. In the present study, 100 liters lab-scale aerobic MBR was seeded with 1.5 Liter activated sludge and municipal wastewater from AL-Rustumiya municipal wastewater treatment station, two hollow fibers sample (MI,MII) manufactured in the University of Technology/ Chemical Engineering Department, were used as biomembranes. Trans membrane pressure TMP was studied and it was found that the optimum value of TMP was 10 cm Hg vacuum which gave optimum effluent flux 400 ml/hr for MI and 350 ml/hr for MII. The experimental work involves the effect of temperature 25, 35, 45°C on the performance of the MBR fibers sample (MI, MII) and its effect on biomass growth and removal efficiency of the COD, BOD. Both samples show good performance in 25°C.


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
Y. Kobayashi ◽  
M. Yasojima ◽  
K. Komori ◽  
Y. Suzuki ◽  
H. Tanaka

Pharmaceuticals resident in sewage and in the aqueous environment has begun to attract attention. The objectives of this research were to clarify the behaviour of selected human antibiotics in wastewater treatment plants, namely levofloxacin (LVFX), clarithromycin (CAM) and azithromycin (AZM) which are much used in Japan. The concentrations in raw influent of LVFX, CAM, AZM were respectively 425~981ng/L, 340~573ng/L, ND(&lt;190 ng/L)~371ng/L. The averages of removal ratio were about 50 % for all selected antibiotics. It was suggested that selected antibiotics was not too much removed in the conventional creature processing like the conventional activated sludge process. The remarkable removals in activated sludge tank using high class treatment method were confirmed about all selected antibiotics. The rise of the concentrations of CAM and AZM was confirmed after the addition of chemical coagulants in one wastewater treatment plant. From the result of batch experiment with activated sludge, it was suggested that LVFX and AZM were removed from water mainly by the absorption to activated sludge. Also, in batch experiment with chemical coagulants, it was suggested that LVFX was removed from water and CAM, AZM were eluted a little in water by adding sulphuric acid band.


Sign in / Sign up

Export Citation Format

Share Document