scholarly journals Crosstalk of ER Stress, Mitochondrial Membrane Potential and ROS Determines Cell Death Mechanisms Induced by Etoposide Loaded GelatinNanoparticles in MCF-7 Breast Cancer Cells

2018 ◽  
Vol 09 (04) ◽  
Author(s):  
Anita K. Verma ◽  
Imran Moin ◽  
Largee Biswas ◽  
Disha Mittal ◽  
Ankita Leekha ◽  
...  
Synergy ◽  
2018 ◽  
Vol 7 ◽  
pp. 10-16
Author(s):  
Fatemeh Kiani ◽  
Negin Rasouli ◽  
Tahereh Kashkoolinejad ◽  
Shahrokh Safarian ◽  
Seyed Jalal Zargar ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Zahra Shahsavari ◽  
Fatemeh Karami-Tehrani ◽  
Siamak Salami

Background: Recognition of a new therapeutic agent may activate an alternative programmed cell death for the treatment of breast cancer. Objective: Here, it has been tried to evaluate the effects of Shikonin, a naphthoquinone derivative of Lithospermum erythrorhizon, on the induction of necroptosis and apoptosis mediated by RIPK1-RIPK3 in the ER+ breast cancer cell line, MCF-7. Methods: In the current study, cell death modalities, cell cycle patterns, RIPK1 and RIPK3 expressions, caspase-3 and caspase-8 activities, reactive oxygen species and mitochondrial membrane potential have been evaluated in the Shikonin-treated MCF-7 cells. Results: Necroptosis and apoptosis have been occurred by Shikonin, with a significant increase in RIPK1 and RIPK3 expressions, although necroptosis was the major rout in MCF-7 cells. Shikonin significantly increased the percentage of the cells in sub-G1 and also those in the later stages of cell cycle, which represents an increase in necroptosis and apoptosis. Under caspase inhibition by Z-VAD-FMK, Shikonin has stimulated necroptosis, which could be arrested by Nec-1. An increase in ROS levels and a decrease in the mitochondrial membrane potential have also been observed. Conclusion: On the basis of present findings, Shikonin has been suggested as a good candidate for the induction of cell death in ER+ breast cancer, although further investigations, experimental and clinical, are required.


2016 ◽  
Vol 241 (18) ◽  
pp. 2086-2093 ◽  
Author(s):  
Mengxia Zhang ◽  
Hailiang Zhang ◽  
Fan Tang ◽  
Yuhua Wang ◽  
Zhongcheng Mo ◽  
...  

Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 9
Author(s):  
Amani Abdulmunem ◽  
Pınar Obakan-Yerlikaya ◽  
Elif-Damla Arisan ◽  
Ajda Coker-Gurkan

Breast cancer is the most common cancer in women worldwide and the second most common cancer overall. Autocrine growth hormone (GH) expression induced cell proliferation, growth, invasion-metastasis in vitro and in vivo breast cancer models. Moreover, forced GH signaling acts as a drug resistance profile in breast cancer cell lines against chemotherapeutic drugs such as tamoxifen, mitomycin C, doxorubicin and curcumin. Triptolide, an active plant extract from Tripterygium wilfordii, has been shown to induce apoptotic cell death in various cancer cells such a prostate, colon, breast cancer. Metformin, a common therapeutic agent for type II Diabetes mellitus, has been shown to induce autophagy, endoplasmic reticulum (ER) stress and apoptotic cell death in cancer cells. Our aim is to demonstrate the potential effect of metformin on triptolide-mediated drug resistance in autocrine GH expressing MDA-MB-231 breast cancer cells through Endoplasmic reticulum (ER) stress. Autocrine GH-mediated triptolide (20 nM) resistance overcame by metformin (2 mM) co-teatment in MDA-MB231 breast cancer cells through accelerating cell viability loss, growth inhibition compared to alone triptolide treatment. Combined treatment increased apoptotic cell death via CHOP activation, IRE1α upregulation. Consequently, we suggest that triptolide can be more effective with metformin combination in MDA-MB-231 GH+ drug resistant breast cancer cells.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1280
Author(s):  
Seung-Ho Park ◽  
Hyunhee Kim ◽  
Sungmin Kwak ◽  
Ji-Hoon Jeong ◽  
Jangho Lee ◽  
...  

Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3–ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3–ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3–ERα complex and substitution of the occupancy on the promoter by the p53–p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3–ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.


2015 ◽  
Vol 11 (6) ◽  
pp. 4532-4540 ◽  
Author(s):  
ELIF DAMLA ARISAN ◽  
YUNUS AKKOÇ ◽  
KAAN GENCER AKYÜZ ◽  
EZGI MELEK KERMAN ◽  
PINAR OBAKAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document