scholarly journals Characterization of Slow Rusting Resistance Against Stem Rust (Puccinia graminis f. sp. tritici) in Selected Bread Wheat Cultivars of Ethiopia

2018 ◽  
Vol 06 (05) ◽  
Author(s):  
Mengistu Mitiku ◽  
Netsanet Bacha Hei ◽  
Merkuz Abera
Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Bekele Hundie ◽  
Bedada Girma ◽  
Zerihun Tadesse ◽  
Erena Edae ◽  
Pablo Olivera ◽  
...  

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


2014 ◽  
Vol 163 (5) ◽  
pp. 353-363 ◽  
Author(s):  
Netsanet Hei ◽  
Hussein Ali Shimelis ◽  
Mark Laing ◽  
Belayneh Admassu

2020 ◽  
Vol 11 ◽  
Author(s):  
Julio Huerta-Espino ◽  
Ravi Singh ◽  
Leonardo A. Crespo-Herrera ◽  
Héctor E. Villaseñor-Mir ◽  
Maria F. Rodriguez-Garcia ◽  
...  

1979 ◽  
Vol 30 (3) ◽  
pp. 403 ◽  
Author(s):  
RG Rees ◽  
JP Thompson ◽  
RJ Mayer

The effectiveness of vertical resistance to rusts in wheat as generally employed is short-lived and a more durable form of resistance is required. To examine slow rusting and tolerance, the progress and effects of epidemics of stem rust (Puccinia graminis Pers, f. sp. tritici Erikss. & Henn.) in 45 wheat cultivars have been followed during two seasons. The epidemics in each cultivar have been compared by means of the average disease assessment, area below the disease progress curve, apparent infection rate, and intercept of the logit line, and by pattern analysis. Of these measures, the infection rate was the least valuable, whilst pattern analysis allowed useful grouping of cuItivars with similar epidemic patterns. The cultivars were arrayed on a resistance spectrum and ranged from highly resistant to extremely susceptible, those between possessing various levels of slow-rusting ability. Slow rusting was at a comparatively high level in cvv. Hopps, Dural, Lawrence and Celebration. In contrast cv. Mengavi was shown to be a fast ruster. The danger of developing cultivars, such as Mengavi, with a fast-rusting tendency masked by initially effective vertical resistance is discussed. The effects of the epidemics in each cultivar have also been determined to provide a tolerance index. The percentage reduction in grain-filling period, the logit-line intercept value and the delay to 10% disease relative to a susceptible reference cultivar were the main factors associated with the effect of the epidemics on grain yield.


1971 ◽  
Vol 13 (1) ◽  
pp. 119-127 ◽  
Author(s):  
A. K. Sanghi ◽  
N. H. Luig

Nine genes conditioning resistance to cultures of P. graminis tritici (possessing unusual genes for avirulence), P. graminis secalis, and sexual or somatic hybrids between these formae speciales were found in the wheat cultivars Mentana and Yalta. In Mentana, Sr8 operated against all six cultures utilized; but in Yalta, Sr11 conditioned resistance to only two hybrid cultures. In addition, four other genes in Mentana and three genes in Yalta operated against the cultures.The present study indicates that hybridization between wheat stem rust and rye stem rust can be important in producing new combinations of virulence genes which can attack known genes for resistance in wheat. The implications of such hybridization in relation to the transference to wheat of resistance in rye to P. graminis tritici are discussed.


Sign in / Sign up

Export Citation Format

Share Document