In Vitro Effects of Nicotine, Cigarette Smoke Condensate, and Porphyromonas gingivalis on Monocyte Chemoattractant Protein-1 Expression from Cultured Human Gingival Fibroblasts

Author(s):  
Eman Allam Mia Recupito
1998 ◽  
Vol 9 (12) ◽  
pp. 2283-2290
Author(s):  
B Beck-Schimmer ◽  
B Oertli ◽  
T Pasch ◽  
R P Wüthrich

Hyaluronan (HA) is a nonsulfated glycosaminoglycan that accumulates in the renal interstitium in immune-mediated kidney diseases. The functional significance of such HA deposition in the kidney has not been elucidated. Several studies have suggested that HA may exhibit proinflammatory effects. Since chemokines such as monocyte chemoattractant protein-1 (MCP-1) play an important role in the recruitment of leukocytes in renal injury, this study tested whether HA and its fragments could promote MCP-1 production by renal parenchymal cells. Mouse cortical tubular cells were stimulated with fragmented HA or with high molecular weight HA (Healon) in vitro and were examined for MCP-1 expression. Fragmented HA, but not Healon, increased MCP-1 mRNA within 30 min with a peak after 2 h. In addition, a 10-fold increase of MCP-1 protein in the supernatant was found after a 6-h stimulation with fragmented HA. The enhanced MCP-1 mRNA and protein expression in response to HA was dose-dependent between 1 and 100 microg/ml. Upregulation of MCP-1 protein production could be blocked by preincubation with actinomycin D or cycloheximide, suggesting that MCP-1 mRNA and protein expression in response to HA are based on de novo synthesis. The HA-stimulated MCP-1 production was also inhibited with anti-CD44 antibodies, suggesting that MCP-1 is upregulated at least in part by signaling through CD44. In summary, fragmented HA markedly stimulates renal tubular MCP-1 production by mechanisms that involve binding to the HA receptor CD44. It is hypothesized that the accumulation of HA in immune renal injury could participate in the recruitment and activation of inflammatory cells in vivo through production of MCP-1.


2020 ◽  
Vol 26 (5) ◽  
pp. 289-300
Author(s):  
JP Jaworski ◽  
M Urrutia ◽  
E Dascal ◽  
G Jaita ◽  
MC Peluffo

Abstract Expression of immune function genes within follicle cells has been reported in ovaries from many species. Recent work from our laboratory showed a direct effect of the monocyte chemoattractant protein 1/C-C motif chemokine receptor 2 system within the feline cumulus oocyte complex, by increasing the mRNA levels of key genes involved in the ovulatory cascade in vitro. Studies were designed to evaluate if C–C motif chemokine receptor 2 acts as a novel mediator of the ovulatory cascade in vitro. Therefore, feline cumulus oocyte complexes were cultured in the presence or absence of a highly selective C–C motif chemokine receptor 2 antagonist together with known inducers of cumulus–oocyte expansion and/or oocyte maturation to assess mRNA expression of key genes related to periovulatory events in other species as well as oocyte maturation. Also, the effects of recombinant monocyte chemoattractant protein 1 on spontaneous or gonadotrophin-induced oocyte maturation were assessed. This is an in vitro system using isolated cumulus oocyte complexes from feline ovaries. The present study reveals the modulation of several key ovulatory genes by a highly selective C–C motif chemokine receptor 2 antagonist. However, this antagonist was not enough to block the oocyte maturation induced by gonadotropins or amphiregulin. Nonetheless, recombinant monocyte chemoattractant protein 1 had a significant effect on spontaneous oocyte maturation, increasing the percentage of metaphase II stage oocytes in comparison to the control. This is the first study in any species to establish C–C motif chemokine receptor 2 as a mediator of some actions of the mid-cycle gonadotrophin surge.


2002 ◽  
Vol 70 (12) ◽  
pp. 6638-6645 ◽  
Author(s):  
Tie Liu ◽  
Tetsuya Matsuguchi ◽  
Naotake Tsuboi ◽  
Toshiki Yajima ◽  
Yasunobu Yoshikai

ABSTRACT We have previously reported that differences in early production of interleukin 12 (IL-12) by dendritic cells (DC) underlies the difference between the susceptibilities to Listeria monocytogenes of C57BL/6 and BALB/c mice. To elucidate mechanisms for the different abilities of DC to produce cytokine in C57BL/6 and BALB/c mice, we examined Toll-like receptor (TLR) expression by DC and their responses in vitro to known microbial ligands for TLRs. We found that DC isolated from the spleens of naive C57BL/6 mice preferentially expressed TLR9 mRNA, whereas DC from naive BALB/c mice strongly expressed TLR2, -4, -5, and -6 mRNAs. C57BL/6 DC produced a higher level of IL-12p40 in response to the ligands for TLR4 (lipopolysaccharide), TLR2 (lipoprotein), and TLR9 (CpG), whereas BALB/c DC responded to these ligands by producing a larger amount of monocyte chemoattractant protein 1. C57BL/6 DC expressed higher levels of CD40 and Stat4 than BALB/c DC did, suggesting that naive C57BL/6 mice contained more-mature subsets of DC than naive BALB/c mice. Differences in reactivities of DC to microbial molecules through TLRs may be associated with susceptibility and resistance to Listeria infection in BALB/c and C57BL/6 mice.


2008 ◽  
Vol 54 (5) ◽  
pp. 814-823 ◽  
Author(s):  
Maria A Sardo ◽  
Salvatore Campo ◽  
Giuseppe Mandraffino ◽  
Carlo Saitta ◽  
Antonio Bonaiuto ◽  
...  

Abstract Background: People with hypertension display an inflammatory pattern that includes increased plasma concentrations of monocyte chemoattractant protein 1 (MCP-1) and C-reactive protein (CRP) and enhanced expression of tissue factor (TF) mRNA in blood monocytes. Methods: In this study, we investigated the relationship between CRP concentrations and TF and MCP-1 mRNA expression in unstimulated and lipopolysaccharide (LPS)-stimulated monocytes isolated from hypertensives with or without an increase in carotid intima-media thickness (IMT). We also investigated the expression of TF and MCP-1 mRNA and MCP-1 protein after in vitro addition of CRP to monocytes. We measured CRP (by immunonephelometry) and monocyte expression of TF and MCP-1 (by real-time PCR) in 80 untreated hypertensive patients without clinical cardiovascular disease (CVD) or additional risk factors for CVD compared with 41 controls. Based on IMT measured by carotid Doppler ultrasonography, patients were classified into the categories of normal (≤1 mm) or abnormal (>1 mm). TF and MCP-1 mRNA and MCP-1 protein (by Western blotting) were measured after in vitro addition of CRP to monocytes from 10 randomized controls as well as 10 hypertensives with IMT ≤1 mm and 10 with IMT >1 mm. Results: CRP and TF and MCP-1 mRNA concentrations were significantly higher in IMT >1 mm hypertensives vs those with IMT ≤1 mm and controls. CRP had no effect on monocyte TF mRNA from either hypertensives or controls. CRP-stimulated monocytes from hypertensives, however, showed increased MCP-1 mRNA and protein expression compared with controls and LPS-stimulated cells. Conclusions: Our findings suggest that the inflammatory response of blood monocytes plays an important role in the development of atherosclerosis and hypertension.


1999 ◽  
Vol 19 (10) ◽  
pp. 6471-6478 ◽  
Author(s):  
Michael Poon ◽  
Bin Liu ◽  
Mark B. Taubman

ABSTRACT Glucocorticoids are potent anti-inflammatory agents widely used in the treatment of human disease. We have previously shown that the inflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) is regulated posttranscriptionally by glucocorticoids in arterial smooth muscle cells (SMC). To elucidate the mechanism mediating this effect, in vitro-transcribed radiolabeled MCP-1 mRNA was incubated with cytoplasmic extracts from SMC and analyzed by gel electrophoresis. Extracts from SMC treated with platelet-derived growth factor (PDGF) did not degrade the transcripts for up to 3 h. In contrast, extracts from cells treated with 1 μM dexamethasone (Dex) alone or in combination with PDGF degraded the probe with a half-life of ≈15 min. Dex had maximal effect at concentrations above 0.01 μM and was effective on both rat and human MCP-1 transcripts. By deletion analysis, the Dex-sensitive region of the MCP-1 mRNA was localized to the initial 224 nucleotides (nt) at the 5′ end and did not involve an AU-rich sequence in the 3′ untranslated end. The 224-nt region conferred Dex sensitivity to heterologous mRNA. These studies provide new insights into the molecular mechanisms underlying the effect of glucocorticoids on gene expression.


1995 ◽  
Vol 76 (5) ◽  
pp. 750-757 ◽  
Author(s):  
Masafumi Takahashi ◽  
Jun-Ichi Masuyama ◽  
Uichi Ikeda ◽  
Tadashi Kasahara ◽  
Sei-Ichi Kitagawa ◽  
...  

PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Peng ◽  
Qiang Li ◽  
Lu Zhang ◽  
Ming Bai ◽  
Zheng Zhang

Peroxisome proliferator-activated receptorαis a member of the nuclear receptor superfamily. It modulates smooth muscle cell proliferation and inflammatory cytokines in vitro. In this study, we tested the hypothesis that PPARαwould decrease the expression of monocyte chemoattractant protein-1 and tissue factor, and inhibit neointimal formation in a murine double carotid artery injury model. Carotid artery injury was performed in the PPARαknockout and wild type (WT) mice, treated and untreated with Wy14643, a PPARαactivator. Up-regulated MCP-1 and TF expression and more neointimal formation were observed in the PPARα−/−mice compared with WT mice. The activation of PPARαresulted in further decreased neointimal formation. Our data further suggest that the decrease in neointimal formation is due to down-regulation of MCP-1 by PPARαresulting in decreased leukocyte infiltration and TF expression.


Sign in / Sign up

Export Citation Format

Share Document