GIS based inter-class change analysis of classified multi-temporal landsat satellite images at a drought-prone semi-arid river basin in India

2017 ◽  
Vol 06 (04) ◽  
Author(s):  
Arun B Inamdar ◽  
Anjan Roy
2018 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Sam Wouthuyzen ◽  
Fasmi Ahmad

<strong>Mangrove Mapping of The Lease Islands, Maluku Province Using Multi-Temporal And Multi-Sensor Of Landsat Satellite Images.</strong> Mangrove mapping in the Lease Islands, Maluku Province has been done, but using only a single date satellite image. Therefore, it is difficult to know the dynamics of their changes.  The aim of this study is to map mangroves every 5 year (1985-2015) using multi-sensors (MSS, TM, ETM+ and OLI) of Landsat and field data. Supervised classification using maximum likelihood was used for classifying mangrove and other habitats, and counting their areas. Results showed that mangrove in the Saparua and Nusalaut Islands, consisted of 22 and 13 species, respectively, with the longest distribution along the cost line of Tuhaha Bay due to freshwater supplay from the surrounding river, while the rest are grown in the hardy reef flat substrates. The mean overall acurracies of the maps was good enough (74.7%), except for one Landsat-5 TM and Landat-8 OLI because of the influences of cloud cover or haze.  During 30 years, the areas of mangrove are relatively stable since they are protected by local wisdom called "Kewang". The highest bias of 11.4% that made the areas of mangrove increase or decrease was not due to the utilization or conversion of mangrove, but mainly due to the influences of cloud cover/haze and the geometric differences among Landsat sensors. In the near future, the OBIA method should be try, because it seems to be able to produce mangrove maps with better accuracy.


Author(s):  
Nanik Suryo Haryani ◽  
Sayidah Sulma ◽  
Junita Monika Pasaribu

The solid form of oil heavy metal waste is  known as acid sludge. The aim of this research is to exercise the correlation between acid sludge concentration in soil and NDVI value, and further studying the Normalized Difference Vegetation Index (NDVI) anomaly by multi-temporal Landsat satellite images. The implemented method is NDVI.  In this research, NDVI is analyzed using the  remote sensing data  on dry season and wet season.  Between 1997 to 2012, NDVI value in dry season  is around – 0.007 (July 2001) to 0.386 (May 1997), meanwhile in wet season  NDVI value is around – 0.005 (November 2006) to 0.381 (December 1995).  The high NDVI value shows the leaf health or  thickness, where the low NDVI indicates the vegetation stress and rareness which can be concluded as the evidence of contamination. The rehabilitation has been executed in the acid sludge contaminated location, where the high value of NDVI indicates the successfull land rehabilitation effort.


2021 ◽  
Vol 5 (2) ◽  
pp. 209-219
Author(s):  
Assoule Dechaicha ◽  
Adel Daikh ◽  
Djamel Alkama

Nowadays, uncontrolled urbanisation is one of the major problems facing Algerian oasis regions. The monitoring and evaluation of its landscape transformations remain a key step for any oasis sustainability project. This study highlights the evolution of spatial growth in the city of Adrar in southern Algeria during the period 1986-2016 by establishing a Spatio-temporal mapping and landscape quantification. The methodological approach is based on a multi-temporal analysis of Landsat satellite images for 1986, 1996, 2006 and 2016, and the application of landscape metrics. The results show two opposite spatial trends: significant growth of built-up areas against an excessive loss of palm groves. The landscape metrics allowed the identification of a progressive fragmentation process characterising the palm groves. Thus, the findings of this study show the utility of satellite imagery and landscape metrics approach for monitoring urbanisation patterns and assessing their impacts on oasis ecosystems.


Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 429
Author(s):  
Katharina Hess ◽  
Susanne Schmidt ◽  
Marcus Nüsser ◽  
Carina Zang ◽  
Juliane Dame

In the semi-arid and arid regions of the Chilean Andes, meltwater from the cryosphere is a key resource for the local economy and population. In this setting, climate change and economic activities foster water scarcity and resource conflicts. The study presents a detailed glacier and rock glacier inventory for the Huasco valley (28–29° S) in northern Chile based on a multi-temporal remote sensing approach. The results indicate a glacier-covered area of 16.35 ± 3.06 km2 (n = 167) and, additionally, 50 rock glaciers covering an area of about 8.6 km2 in 2016. About 81% of the ice-bodies are smaller than 0.1 km2, and only four glaciers are larger than 1 km2. The change analysis reveals a more or less stable period between 1986 and 2000 and a drastic decline in the glacier-covered area by about 35% between 2000 and 2016. The detailed assessment of six subregions indicates a more pronounced glacier decrease in the vicinity of the Pascua Lama mining project.


Sign in / Sign up

Export Citation Format

Share Document