scholarly journals Comparison of Different Synthesis Schemes for Production of Sodium Methoxide from Methanol and Sodium Hydroxide

2020 ◽  
Vol 24 (6) ◽  
pp. 63-77
Author(s):  
Natthiyar Aeamsuksai ◽  
Thirawat Mueansichai ◽  
Pongtorn Charoensuppanimit ◽  
Pattaraporn Kim-Lohsoontorn ◽  
Farid Aiouache ◽  
...  

This research investigates the process simulation of sodium methoxide (NaOCH3) synthesis from methanol (CH3OH) and sodium hydroxide (NaOH) under three synthesis schemes: schemes A, B, and C. Scheme A consisted of one equilibrium reactor and two distillation columns, scheme B one reactive distillation column and one distillation column, and scheme C one reactive distillation column and pervaporation membrane. The simulation parameters included CH3OH/NaOH feed flow ratio (1.2-1.6), number of stages (5-30), bottom flow rate (1400-1600 kg/h), and feed stage location (5, 10, 15, 20, 21, 22, 23, and 24). The simulation parameters were varied to determine the optimal NaOCH3 synthetic conditions under different schemes with 0.01 wt% water content, maximum 45 wt% NaOCH3, and the lowest total energy consumption. The results showed that scheme C had the lowest total energy consumption (34.25 GJ/h) under the optimal synthetic condition of 1.4 for CH3OH/NaOH feed flow ratio, 25 for the number of stages, 1550 kg/h for the bottom flow rate, and the 24th feed stage location, with the NaOCH3 flow rate of 675 kg/h. Scheme C thus holds promising potential as an energy-efficient alternative for synthesis of NaOCH3. The novelty of this research lies in the use of pervaporation membrane in place of distillation column to separate CH3OH from water and to lower energy consumption and capital cost.

2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Jitian Song ◽  
Hang Su ◽  
Wei Tian ◽  
Yongxia Feng ◽  
Wenchao Wang

AbstractUltrasonic evaporator is a new type of evaporation equipment using ultrasonic technology to assist evaporation and concentration. It is especially suitable for the materials which are easy to scale and foam. Due to the complexity of heat and mass transfer during ultrasonic technology to assist liquid evaporation process, there are few reports on the energy consumption of ultrasonic evaporation. In this paper, the effects of ultrasonic density, evaporation temperature, and feed flow rate on the total energy consumption of ultrasonic evaporation were studied and tap water was selected as experimental material. It was found that the optimal condition for this ultrasonic evaporator were the ultrasonic power density of 4 × 10−5 W/m2, the evaporation temperature of 65 °C, and the feed rate of 1.389 × 10−5 m3/s. According to the orthogonal test and analysis of variance, it can be obtained that the influence of evaporation temperature on total energy consumption is the largest, the second is feed flow rate, and ultrasonic power density has the least influence.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 554
Author(s):  
Suresh Kallam ◽  
Rizwan Patan ◽  
Tathapudi V. Ramana ◽  
Amir H. Gandomi

Data are presently being produced at an increased speed in different formats, which complicates the design, processing, and evaluation of the data. The MapReduce algorithm is a distributed file system that is used for big data parallel processing. Current implementations of MapReduce assist in data locality along with robustness. In this study, a linear weighted regression and energy-aware greedy scheduling (LWR-EGS) method were combined to handle big data. The LWR-EGS method initially selects tasks for an assignment and then selects the best available machine to identify an optimal solution. With this objective, first, the problem was modeled as an integer linear weighted regression program to choose tasks for the assignment. Then, the best available machines were selected to find the optimal solution. In this manner, the optimization of resources is said to have taken place. Then, an energy efficiency-aware greedy scheduling algorithm was presented to select a position for each task to minimize the total energy consumption of the MapReduce job for big data applications in heterogeneous environments without a significant performance loss. To evaluate the performance, the LWR-EGS method was compared with two related approaches via MapReduce. The experimental results showed that the LWR-EGS method effectively reduced the total energy consumption without producing large scheduling overheads. Moreover, the method also reduced the execution time when compared to state-of-the-art methods. The LWR-EGS method reduced the energy consumption, average processing time, and scheduling overhead by 16%, 20%, and 22%, respectively, compared to existing methods.


2014 ◽  
Vol 67 ◽  
pp. 197-207 ◽  
Author(s):  
Fadi Shrouf ◽  
Joaquin Ordieres-Meré ◽  
Alvaro García-Sánchez ◽  
Miguel Ortega-Mier

Sign in / Sign up

Export Citation Format

Share Document