High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles

2008 ◽  
Vol 45 (10) ◽  
pp. 605-609 ◽  
Author(s):  
Ki-Ho Kang ◽  
Jeong-Ho Chang
Author(s):  
Yasmin Kaveh-Baghbaderani ◽  
Raphaela Allgayer ◽  
Sebastian Patrick Schwaminger ◽  
Paula Fraga-García ◽  
Sonja Berensmeier

2006 ◽  
pp. 2765 ◽  
Author(s):  
Yabin Sun ◽  
Xiaobin Ding ◽  
Zhaohui Zheng ◽  
Xu Cheng ◽  
Xinhua Hu ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 462-466 ◽  
Author(s):  
Mohammad Javad Raee ◽  
Alireza Ebrahiminezhad ◽  
Mohammad Bagher Ghoshoon ◽  
Ahmad Gholami ◽  
Younes Ghasemi

Introduction:Cell separation is one of the important steps of purification in downstream processes. Some separation techniques such as centrifugation and filtration are expensive and would affect cell viability. Magnetic separation can be a good alternative for laboratory and industrial cell separation processes.Methods:For this purpose, L-lysine coated Iron Oxide Nanoparticles (IONs) were synthesized and used for magnetic separation of Escherichia coli as the most applied microbial cell in biotechnological processes.Results:IONs have successfully decorated the bacterial cells and cells were completely separated by applying an external magnetic field.Conclusion:This study showed that coating of E. coli cells with IONs could help to isolate cells from culture media without using expensive instruments.


2015 ◽  
Vol 1 (1) ◽  
pp. 306-309 ◽  
Author(s):  
Kerstin Kläser ◽  
Matthias Graeser ◽  
Dirk Steinhagen ◽  
Kerstin Luedtke-Buzug

AbstractSuspensions of iron oxide particles, so called ferrofluids, are successfully used in various technical, biochemical and medical applications. For example they find use in the area of sensor engineering, magnetic resonance imaging (MRI) and especially magnetic particle imaging (MPI). MPI is a new tomographic imaging technique that determines the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIONs). Besides a very high spatial and temporal resolution MPI provides quantitative realtime imageing. The nanoparticles cause a magnetization change that can be measured. As the particle size distribution has a huge impact on the magnetization behavior is an important parameter for optimization. While synthesizing, SPIONs particles with various dimensions are formed what necessitates a systematically separation by size. For this purpose a construction of a simple device for magnetic separation of SPIONs has been developed. First attemps of separation show the potential of this method.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 623 ◽  
Author(s):  
Hinda Ezzaier ◽  
Jéssica Marins ◽  
Cyrille Claudet ◽  
Gauvin Hemery ◽  
Olivier Sandre ◽  
...  

In this work, we have studied field-induced aggregation and magnetic separation—realized in a microfluidic channel equipped with a single magnetizable micropillar—of multicore iron oxide nanoparticles (IONPs) also called “nanoflowers” of an average size of 27 ± 4 nm and covered by either a citrate or polyethylene (PEG) monolayer having a thickness of 0.2–1 nm and 3.4–7.8 nm, respectively. The thickness of the adsorbed molecular layer is shown to strongly affect the magnetic dipolar coupling parameter because thicker molecular layers result in larger separation distances between nanoparticle metal oxide multicores thus decreasing dipolar magnetic forces between them. This simple geometrical constraint effect leads to the following important features related to the aggregation and magnetic separation processes: (a) Thinner citrate layer on the IONP surface promotes faster and stronger field-induced aggregation resulting in longer and thicker bulk needle-like aggregates as compared to those obtained with a thicker PEG layer; (b) A stronger aggregation of citrated IONPs leads to an enhanced retention capacity of these IONPs by a magnetized micropillar during magnetic separation. However, the capture efficiency Λ at the beginning of the magnetic separation seems to be almost independent of the adsorbed layer thickness. This is explained by the fact that only a small portion of nanoparticles composes bulk aggregates, while the main part of nanoparticles forms chains whose capture efficiency is independent of the adsorbed layer thickness but depends solely on the Mason number Ma. More precisely, the capture efficiency shows a power law trend Λ ∝ M a − n , with n ≈ 1.4–1.7 at 300 < Ma < 104, in agreement with a new theoretical model. Besides these fundamental issues, the current work shows that the multicore IONPs with a size of about 30 nm have a good potential for use in biomedical sensor applications where an efficient low-field magnetic separation is required. In these applications, the nanoparticle surface design should be carried out in a close feedback with the magnetic separation study in order to find a compromise between biological functionalities of the adsorbed molecular layer and magnetic separation efficiency.


Nanoscale ◽  
2018 ◽  
Vol 10 (43) ◽  
pp. 20462-20467 ◽  
Author(s):  
Martín Testa-Anta ◽  
Sara Liébana-Viñas ◽  
Beatriz Rivas-Murias ◽  
Benito Rodríguez González ◽  
Michael Farle ◽  
...  

The large magnetophoretic mobility stemming from the large magnetic susceptibility and the very small coercivity of octapod-shaped iron oxide nanoparticles improve their capability for magnetic separation.


2019 ◽  
Vol 6 (2) ◽  
pp. 52 ◽  
Author(s):  
Sonia Abad Tan ◽  
Georg Zoidl ◽  
Ebrahim Ghafar-Zadeh

This paper focuses on cytotoxicity examination of superparamagnetic iron oxide nanoparticles (SPIONs) using different methods, including impedance spectroscopy. Recent advances of SPIONs for clinical and research applications have triggered the need to understand their effects in cells. Despite the great advances in adapting various biological and chemical methods to assess in-vitro toxicity of SPIONs, less attention has been paid on the development of a high throughput label-free screening platform to study the interaction between the cells and nanoparticles including SPIONs. In this paper, we have taken the first step toward this goal by proposing a label-free impedimetric method for monitoring living cells treated with SPIONs. We demonstrate the effect of SPIONs on the adhesion, growth, proliferation, and viability of neuroblastoma 2A (N2a) cells using impedance spectroscopy as a label-free method, along with other standard microscopic and cell viability testing methods as control methods. Our results have shown a decreased viability of the cells as the concentration of SPIONs increases with percentages of 59%, 47%, and 40% for 100 µg/mL (C4), 200 µg/mL (C5), 300 µg/mL (C6), respectively. Although all SPIONs concentrations have allowed the growth of cells within 72 h, C4, C5, and C6 showed slower growth compared to the control (C1). The growth and proliferation of N2a cells are faster in the absence or low concentration of SPIONS. The percent coefficient of variation (% CV) was used to compare cell concentrations obtained by TBDE assay and a Scepter cell counter. Results also showed that the lower the SPIONs concentration, the lower the impedance is expected to be in the sensing electrodes without the cells. Meanwhile, the variation of surface area (∆S) was affected by the concentration of SPIONs. It was observed that the double layer capacitance was almost constant because of the higher attachment of cells, the lower surface area coated by SPIONs. In conclusion, impedance changes of electrodes exposed to the mixture of cells and SPIONs offer a wide dynamic range (>1 MΩ using Electric Cell-substrate Impedance electrodes) suitable for cytotoxicity studies. Based on impedance based, viability testing and microscopic methods’ results, SPIONs concentrations higher than 100 ug/mL and 300 ug/mL cause minor and major effects, respectively. We propose that a high throughput impedance-based label-free platform provides great advantages for studying SPIONs in a cell-based context, opening a window of opportunity to design and test the next generation of SPIONs with reduced toxicity for biomedical or medical applications.


Sign in / Sign up

Export Citation Format

Share Document