Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash

2009 ◽  
Vol 46 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Hyo-Sang Park ◽  
Dong-Woo Yoo ◽  
Seung-Ho Byun ◽  
Jong-Taek Song

2017 ◽  
Vol 114 (4) ◽  
Author(s):  
Tristana Y. Duvallet ◽  
Laurent Frouin ◽  
Thomas L. Robl ◽  
Anne E. Oberlink ◽  
Robert B. Jewell


2008 ◽  
Vol 45 (6) ◽  
pp. 336-344 ◽  
Author(s):  
Jong-Taek Song ◽  
Hyo-Sang Park ◽  
Seung-Ho Byun ◽  
Dong-Woo Yoo


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3448
Author(s):  
Chenhui Jiang ◽  
Aiying Wang ◽  
Xufan Bao ◽  
Zefeng Chen ◽  
Tongyuan Ni ◽  
...  

This paper presents an experimental investigation on geopolymer coatings (GPC) in terms of surface protection of civil structures. The GPC mixtures were prepared with a quadruple precursor simultaneously containing fly ash (FA), ground granulated blast-furnace slag (GBFS), metakaolin (MK), and Portland cement (OPC). Setting time, compressive along with adhesive strength and permeability, were tested and interpreted from a perspective of potential applications. The preferred GPC with favorable setting time (not shorter than 120 min) and desirable compressive strength (not lower than 35 MPa) was selected from 85 mixture formulations. The results indicate that balancing strength and setting behavior is viable with the aid of the multi-componential precursor and the mixture design based on total molar ratios of key oxides or chemical elements. Adhesive strength of the optimized GPC mixtures was ranged from 1.5 to 3.4 MPa. The induced charge passed based on a rapid test of coated concrete specimens with the preferred GPC was 30% lower than that of the uncoated ones. Setting time of GPC was positively correlated with η[Si/(Na+Al)]. An abrupt increase of setting time occurred when the molar ratio was greater than 1.1. Compressive strength of GPC was positively affected by mass contents of ground granulated blast furnace slag, metakaolin and ordinary Portland cement, and was negatively affected by mass content of fly ash, respectively. Sustained seawater immersion impaired the strength of GPC to a negligible extent. Overall, GPC potentially serves a double purpose of satisfying the usage requirements and achieving a cleaner future.



2010 ◽  
Vol 158 ◽  
pp. 1-11 ◽  
Author(s):  
Zi Qiao Jin ◽  
Xian Jun Lu ◽  
Shu Gang Hu

In order to stimulate the potential cementitious property of granulated blast furnace slag (GBFS), the ground GBFS sample (Wei Fang Iron and Steel Corporation, China) was activated by lime and gypsum under different dosages. The results showed that lime is an effective activator for the slag, and the optimum dosage of lime is about 10% (w/w) of the slag. At the optimum dosage of lime, the 28 days compressive strength of the lime-slag paste is higher than that of 32.5 ordinary Portland cement (OPC). But, the early age strength (3 and 7 days compressive strength) of the lime-slag paste is lower than that of the OPC. Addition of gypsum can effectively improve the early age strength of the lime-slag paste. At the ratio of gypsum:lime:slag of 8.2:9.2:82.6 (w/w), both the early and long-term compressive strengths of the gypsum-lime-slag paste are higher than that of the OPC. According to XRD, TG-DTA and SEM detections of the hydration products of the lime-slag paste, the gypsum-lime-slag paste and the OPC paste, it reveals that the hydration process of the GBFS-based cementitious material is different from the ordinary Portland cement and the presence of ettringite (AFt) contributes to the early age strength of the pastes. The major hydration product of the OPC paste (<7 days) were measured as ettringite (AFt), but the AFt phase was not detected in the hydration product of the lime-slag paste and the major hydration product of the lime-slag paste was determined as amorphous CSH gel. However, AFt was detected in the hydration products of the gypsum-lime-slag paste in the early stages of hydration, and the formation of AFt is favorable for the early strength improvement of the material.





2011 ◽  
Vol 239-242 ◽  
pp. 2389-2394
Author(s):  
Shu Gang Hu ◽  
Hai Li Niu ◽  
Xian Jun Lu

The blast-furnace slag (BFS)has been characterized by chemical and phase composition to evaluate its hydration reactivity. It has high potential activity for its glassy structure, so its use to prepare new filling cementation material is possible. New backfilling cementation material composition has been formulated and optimized by activation of BFS. The optimal formula of new backfilling cementation material SL(Slag activated by lime) and SLG(Slag activated by lime and desulfurization gypsum) was 87% BFS, 13% lime and 78.4% BFS, 11.8% lime, 9.8% desulfurization gypsum respectively. Finally, the feature of application performance was analyzed through comparison between new cementation material and ordinary Portland cement with paste and sand mortar experiment. The result showed that material SL and SLG have superior performance to ordinary Portland cement used to mining cemented filling.



2017 ◽  
Vol 259 ◽  
pp. 30-34 ◽  
Author(s):  
Vlastimil Bílek ◽  
Filip Khestl ◽  
Pavel Mec

Hybrid cements represent a relatively new type of binders which combines some of the advantages of Ordinary Portland Cement and an application of mineral admixtures and alkali activation. Hybrid cements form then blends containing a low portion of OPC and a high proportion of mineral additions (such as blast furnace flag, fly ash, metakaoline, ...). This paper discusses the properties of mortars based on carbonate based activators. Mixtures composed from Ordinary Portland Cement, ground granulated blast furnace slag, fly ash and mechanically pre-activated fly ash were optimised with the target to achieve sufficient compressive strength. The influence of ratios between powder compounds, the dosage of activator and water to binder ratios are presented.



Sign in / Sign up

Export Citation Format

Share Document