scholarly journals Electrophysiological Characterization of AMPA and NMDA Receptors in Rat Dorsal Striatum

2009 ◽  
Vol 13 (3) ◽  
pp. 209 ◽  
Author(s):  
Seung Hyun Jeun ◽  
Hyeong Seok Cho ◽  
Ki Jung Kim ◽  
Qing Zhong Li ◽  
Ki-Wug Sung
2004 ◽  
Vol 357 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Rui Li ◽  
Mikhail Dozmorov ◽  
Fredrik Hellberg ◽  
Ye Tian ◽  
Barbro Jilderos ◽  
...  

2000 ◽  
Vol 164 (2) ◽  
pp. 396-406 ◽  
Author(s):  
Shin Yasuda ◽  
Nobuya Ishida ◽  
Akiko Higashiyama ◽  
Shigeru Morinobu ◽  
Nobumasa Kato

2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sami Havukainen ◽  
Jonai Pujol-Giménez ◽  
Mari Valkonen ◽  
Ann Westerholm-Parvinen ◽  
Matthias A. Hediger ◽  
...  

AbstractTrichoderma reesei is an ascomycete fungus known for its capability to secrete high amounts of extracellular cellulose- and hemicellulose-degrading enzymes. These enzymes are utilized in the production of second-generation biofuels and T. reesei is a well-established host for their production. Although this species has gained considerable interest in the scientific literature, the sugar transportome of T. reesei remains poorly characterized. Better understanding of the proteins involved in the transport of different sugars could be utilized for engineering better enzyme production strains. In this study we aimed to shed light on this matter by characterizing multiple T. reesei transporters capable of transporting various types of sugars. We used phylogenetics to select transporters for expression in Xenopus laevis oocytes to screen for transport activities. Of the 18 tested transporters, 8 were found to be functional in oocytes. 10 transporters in total were investigated in oocytes and in yeast, and for 3 of them no transport function had been described in literature. This comprehensive analysis provides a large body of new knowledge about T. reesei sugar transporters, and further establishes X. laevis oocytes as a valuable tool for studying fungal sugar transporters.


1990 ◽  
Vol 265 (2) ◽  
pp. 908-913
Author(s):  
O Moran ◽  
G Sandri ◽  
E Panfili ◽  
W Stühmer ◽  
M C Sorgato

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rongkang Deng ◽  
Joseph P. Y. Kao ◽  
Patrick O. Kanold

AbstractThe development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.


2016 ◽  
Vol 138 (4) ◽  
pp. 546-556 ◽  
Author(s):  
Martina Kaniakova ◽  
Katarina Lichnerova ◽  
Kristyna Skrenkova ◽  
Ladislav Vyklicky ◽  
Martin Horak

ACS Nano ◽  
2011 ◽  
Vol 5 (5) ◽  
pp. 3599-3606 ◽  
Author(s):  
Maurits R. R. de Planque ◽  
Sara Aghdaei ◽  
Tiina Roose ◽  
Hywel Morgan

Sign in / Sign up

Export Citation Format

Share Document