scholarly journals Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

2015 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Guo-xun Li ◽  
Xi-mo Wang ◽  
Tao Jiang ◽  
Jian-feng Gong ◽  
Ling-ying Niu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao-Yun Zhang ◽  
Hai-Mei Zhao ◽  
Yi Liu ◽  
Xiu-Yun Lu ◽  
Yan-Zhen Li ◽  
...  

Sishen Pill (SSP) is a classical prescription of traditional Chinese medicine and often used to treat gastrointestinal diseases, including ulcerative colitis (UC). However, its mechanism is still unclear. We aimed to determine the mechanism of SSP in the treatment of UC by investigating if it maintains the integrity of the intestinal mucosal barrier via the Rho A/Rho kinase (ROCK) signaling pathway. Administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) successfully induced chronic UC in rats, while the treatment effect of SSP was evaluated by body weight change, colonic length, colonic weight, colonic weight index, histological injury score, and pathological injury score after colitis rats were treated for 7 days. TNF-α and IL-1β levels were analyzed by ELISA, and the proteins of PI3K/Akt and RhoA/ROCK signaling pathway and junction proteins expression were measured by western blotting assay, and the distribution of Claudin 5 was shown by immunofluorescence. SSP significantly improved the clinical symptoms of colitis in rats and reduced the expression of p-RhoA, ROCK1, PI3K, and Akt in the colon mucosa, while it increased the expression of p-Rac and related proteins (Claudin-5, JAM1, VE-cadherin, and Connexin 43). In addition, SSP increased p-AMPKα and PTEN proteins expression, decreased Notch1 level, and hinted that activation of the PI3K/Akt signaling pathway was inhibited. In conclusion, SSP effectively treated chronic colitis induced by TNBS, which may have been achieved by inhibiting PI3K/Akt signal to suppress activation of the Rho/ROCK signaling pathway to finally maintain the integrity of the intestinal mucosal barrier.


2017 ◽  
Author(s):  
Tanzhou Chen ◽  
Haibo Xue ◽  
Ruoyang Lin ◽  
Zhiming Huang

AbstractBackgroundAberrant expression of miRNAs was a critical element in the pathogenesis of inflammatory bowel disease (IBD). This study aimed to explore the involvement and mechanism of miR-126 in IBD.MethodsIn this study, the endogenous expressions of miR-126, S1PR2 and S1P in the pathological tissues of patients with IBD were detected using qRT-PCR and western blot assay, respectively. The luciferase reporter gene assay was performed to confirm the targeting regulatory relation between miR-126 and S1PR2. The transendothelial electrical resistance assay was used to measured the value of TEER.ResultsThe expressions of miR-126, S1PR2 and S1P in the pathological tissues of IBD patients were significantly higher than that of the control group. Moreover, miR-126 overexpression contributed to intestinal mucosal barrier dysfunction in vitro. S1PR2 was a direct target of miR-126, and S1PR2 expression was negatively regulated by miR-126 in Caco-2 cells. However, S1PR2 activated by S1P had the protection effect for the integrity and permeability of intestinal mucosal barrier via a PI3K/Akt dependent mechanism. MiR-126 silencing possessed obvious protective effects on the intestinal barrier function, but these effects could be reversed by JTE-013 or LY294002.ConclusionMiR-126 down-regulated S1PR2 and then prevented the activation of PI3K/AKT signaling pathway, which ultimately could damage intestinal mucosal barrier function.


Sign in / Sign up

Export Citation Format

Share Document