scholarly journals Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition

2021 ◽  
Vol 25 (3) ◽  
pp. 251-258
Author(s):  
Phan Thi Lam Hong ◽  
Hyun Jong Kim ◽  
Woo Kyung Kim ◽  
Joo Hyun Nam
Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
J Song ◽  
B Prasad Gaire ◽  
H Lee ◽  
H Kim

2020 ◽  
Vol 10 ◽  
Author(s):  
Sharmaine Y. Dela Cruz ◽  
Ross D. Vasquez ◽  
Reginald B. Salonga ◽  
Mary Jho-Anne T. Corpuz

Background: Sargassum polycystum C. Agardh has potent antioxidant and anti-inflammatory properties. However, its anti-allergic effect has not yet been reported. In this study, we investigated the anti-allergic effects of sulfated polysaccharide of S. polycystum (SPSP) in Dinitrofluorobenzene (DNFB)- induced allergic contact dermatitis animal model. Methods: SPSP was extracted through hot water extraction method and was subjected to compositional analyses. For the allergic contact dermatitis (ACD) model, symptoms were induced by the topical application of 0.5% DNFB on the shaved ventral skin of mice. SPSP (500, 1000, and 2000 mg/kg) and Prednisolone were orally administered for seven days after sensitization. Elicitation was performed seven days later with 0.2% DNFB. After this, ear thickness was measured at baseline and 24 hours post elicitation using a dial thickness gauge. Serum of mice was obtained 24 hours post elicitation, and the level of IFNγ and TNF Results: SPSP afforded 33.6% carbohydrates, 23.7% sulfate, 7.5% protein, and 1.5% uronic acid contents. SPSP inhibited the ear swelling and cytokines (IFNγ and TNF Conclusion: These findings showed that the sulfated polysaccharide from S. polycytum is a potential natural source to treat Allergic Contact Dermatitis. The effect is attributed to polysaccharide-protein complex present in the extract, but further studies are needed to establish the exact mechanism of action of SPSP in the treatment of the disease.


Author(s):  
Leila Topal ◽  
Muhammad Naveed ◽  
Péter Orvos ◽  
Bence Pászti ◽  
János Prorok ◽  
...  

AbstractCannabis use is associated with known cardiovascular side effects such as cardiac arrhythmias or even sudden cardiac death. The mechanisms behind these adverse effects are unknown. The aim of the present work was to study the cellular cardiac electrophysiological effects of cannabidiol (CBD) on action potentials and several transmembrane potassium currents, such as the rapid (IKr) and slow (IKs) delayed rectifier, the transient outward (Ito) and inward rectifier (IK1) potassium currents in rabbit and dog cardiac preparations. CBD increased action potential duration (APD) significantly in both rabbit (from 211.7 ± 11.2. to 224.6 ± 11.4 ms, n = 8) and dog (from 215.2 ± 9.0 to 231.7 ± 4.7 ms, n = 6) ventricular papillary muscle at 5 µM concentration. CBD decreased IKr, IKs and Ito (only in dog) significantly with corresponding estimated EC50 values of 4.9, 3.1 and 5 µM, respectively, without changing IK1. Although the EC50 value of CBD was found to be higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that potassium channel inhibition by lengthening cardiac repolarization might have a role in the possible proarrhythmic side effects of cannabinoids in situations where CBD metabolism and/or the repolarization reserve is impaired.


Anemia ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Erwin Weiss ◽  
David Charles Rees ◽  
John Stanley Gibson

Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates entry, providing an obvious link with phosphatidylserine exposure. The role of was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [] was increased. This effect was inhibited by dipyridamole, intracellular chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high saline. levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with entry through the deoxygenation-induced pathway (), activating the Gardos channel. [] required for phosphatidylserine scrambling are in the range achievablein vivo.


1996 ◽  
Vol 271 (4) ◽  
pp. C1122-C1130 ◽  
Author(s):  
O. Mayorga-Wark ◽  
W. P. Dubinsky ◽  
S. G. Schultz

K+ channels present in basolateral membrane vesicles isolated from Necturus maculosa small intestinal cells and reconstituted into planar phospholipid bilayers are inhibited by MgATP and sulfonylurea derivatives, such as tolbutamide and glibenclamide, when these agents are added to the solution bathing the inner mouth of the channel. In addition, these channels possess an intrinsic "voltage gate" and are blocked when the electrical potential difference across the channel is oriented so that the inner solution is electrically positive with respect to the outer solution. We now show that increasing the concentration of permeant ions such as K+ or Rb+ in the outer solution reverses channel inhibition resulting from the addition of 50 microM glibenclamide to the inner solution and also inhibits intrinsic voltage gating; these effects are not elicited by increasing the concentrations of the relatively impermeant ions, Na+ or choline, in the outer solution. Furthermore, increasing the K+ concentration in the outer solution in the absence of glibenclamide inhibits voltage gating, and, under these conditions, the subsequent addition of glibenclamide to the inner solution is ineffective. These results are consistent with a model in which the voltage gate is an open-channel blocker whose action is directly reversed by elevating the external concentration of relatively permeant cations and where the action of glibenclamide is to stabilize the inactivated state of the channel, possibly through hydrophobic interactions.


1999 ◽  
Vol 45 (6) ◽  
pp. 910-910
Author(s):  
Vladimir Levine ◽  
Massroor Pourcyrous ◽  
Henrietta Bada ◽  
Wenjian Yang ◽  
Sheldon Korones ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Wang ◽  
Ke-Chun Wu ◽  
Bing-Xiang Zhao ◽  
Xin Zhao ◽  
Xin Wang ◽  
...  

The purpose of this study was to prepare a novel paclitaxel (PTX) microemulsion containing a reduced amount of Cremophor EL (CrEL) which had similar pharmacokinetics and antitumor efficacy as the commercially available PTX injection, but a significantly reduced allergic effect due to the CrEL. The pharmacokinetics, biodistribution,in vivoantitumor activity and safety of PTX microemulsion was evaluated. The results of pharmacokinetic and distribution properties of PTX in the microemulsion were similar to those of the PTX injection. The antitumor efficacy of the PTX microemulsion in OVCRA-3 and A 549 tumor-bearing animals was similar to that of PTX injection. The PTX microemulsion did not cause haemolysis, erythrocyte agglutination or simulative reaction. The incidence and degree of allergic reactions exhibited by the PTX microemulsion group, with or without premedication, were significantly lower than those in the PTX injection group (P<.01). In conclusion, the PTX microemulsion had similar pharmacokinetics and anti-tumor efficacy to the PTX injection, but a significantly reduced allergic effect due to CrEL, indicating that the PTX microemulsion overcomes the disadvantages of the conventional PTX injection and is one way of avoiding the limitations of current injection product while providing suitable therapeutic efficacy.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Peter Lukacs ◽  
Mátyás C. Földi ◽  
Luca Valánszki ◽  
Emilio Casanova ◽  
Beáta Biri-Kovács ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document