On the Study of ZM(G) the Central Measure Algebra of a Connected Lie Group

1991 ◽  
Vol 3 (1) ◽  
pp. 191-200
Author(s):  
S FARAG

Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.



1989 ◽  
Vol 105 (2) ◽  
pp. 253-261 ◽  
Author(s):  
K. H. Hofmann ◽  
T. S. Wu ◽  
J. S. Yang

Dense immersions occur frequently in Lie group theory. Suppose that exp: g → G denotes the exponential function of a Lie group and a is a Lie subalgebra of g. Then there is a unique Lie group ALie with exponential function exp:a → ALie and an immersion f:ALie→G whose induced morphism L(j) on the Lie algebra level is the inclusion a → g and which has as image an analytic subgroup A of G. The group Ā is a connected Lie group in which A is normal and dense and the corestrictionis a dense immersion. Unless A is closed, in which case f' is an isomorphism of Lie groups, dim a = dim ALie is strictly smaller than dim h = dim H.



Author(s):  
THOMAS DECK

We show that a nuclear space of analytic functions on K is associated with each compact, connected Lie group K. Its dual space consists of distributions (generalized functions on K) which correspond to the Hida distributions in white noise analysis. We extend Hall's transform to the space of Hida distributions on K. This extension — the S-transform on K — is then used to characterize Hida distributions by holomorphic functions satisfying exponential growth conditions (U-functions). We also give a tensor description of Hida distributions which is induced by the Taylor map on U-functions. Finally we consider the Wiener path group over a complex, connected Lie group. We show that the Taylor map for square integrable holomorphic Wiener functions is not isometric w.r.t. the natural tensor norm. This indicates (besides other arguments) that there might be no generalization of Hida distribution theory for (noncommutative) path groups equipped with Wiener measure.



Author(s):  
Loring W. Tu

This chapter describes basic forms. On a principal bundle π‎: P → M, the differential forms on P that are pullbacks of forms ω‎ on the base M are called basic forms. The chapter characterizes basic forms in terms of the Lie derivative and interior multiplication. It shows that basic forms on a principal bundle are invariant and horizontal. To understand basic forms better, the chapter considers a simple example. The plane ℝ2 may be viewed as the total space of a principal ℝ-bundle. A connected Lie group is generated by any neighborhood of the identity. This example shows the necessity of the connectedness hypothesis.



1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.



1982 ◽  
Vol 34 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Stephen Halperin ◽  
Jean Claude Thomas

Let be two Serre fibrations with same base and fibre in which all the spaces have the homotopy type of simple CW complexes of finite type. We say they are rationally homotopically equivalent if there is a homotopy equivalence between the localizations at Q which covers the identity map of BQ.Such an equivalence implies, of course, an isomorphism of cohomology algebras (over Q) and of rational homotopy groups; on the other hand isomorphisms of these classical algebraic invariants are usually (by far) insufficient to establish the existence of a rational homotopy equivalence.Nonetheless, as we shall show in this note, for certain fibrations rational homotopy equivalence is in fact implied by the existence of an isomorphism of cohomology algebras. While these fibrations are rare inside the class of all fibrations, they do include principal bundles with structure groups a connected Lie group G as well as many associated bundles with fibre G/K.



Author(s):  
Daniel Oeh

Abstract Let $(G,\tau )$ be a finite-dimensional Lie group with an involutive automorphism $\tau $ of $G$ and let ${{\mathfrak{g}}} = {{\mathfrak{h}}} \oplus{{\mathfrak{q}}}$ be its corresponding Lie algebra decomposition. We show that every nondegenerate strongly continuous representation on a complex Hilbert space ${\mathcal{H}}$ of an open $^\ast $-subsemigroup $S \subset G$, where $s^{\ast } = \tau (s)^{-1}$, has an analytic extension to a strongly continuous unitary representation of the 1-connected Lie group $G_1^c$ with Lie algebra $[{{\mathfrak{q}}},{{\mathfrak{q}}}] \oplus i{{\mathfrak{q}}}$. We further examine the minimal conditions under which an analytic extension to the 1-connected Lie group $G^c$ with Lie algebra ${{\mathfrak{h}}} \oplus i{{\mathfrak{q}}}$ exists. This result generalizes the Lüscher–Mack theorem and the extensions of the Lüscher–Mack theorem for $^\ast $-subsemigroups satisfying $S = S(G^\tau )_0$ by Merigon, Neeb, and Ólafsson. Finally, we prove that nondegenerate strongly continuous representations of certain $^\ast $-subsemigroups $S$ can even be extended to representations of a generalized version of an Olshanski semigroup.



2017 ◽  
Vol 14 (09) ◽  
pp. 1750126
Author(s):  
A. Kara Hansen ◽  
S. Selcuk Sutlu

In this work, we study minimal realization problem for an affine control system [Formula: see text] on a connected Lie group [Formula: see text]. We construct a minimal realization by using a canonical projection and by characterizing indistinguishable points of the system.



2011 ◽  
Vol 22 (03) ◽  
pp. 399-406
Author(s):  
R. MIRZAIE

We show that the orbit space of Euclidean space, under the action of a closed and connected Lie group of isometries is homeomorphic to a plane or closed half-plane, if the action is of cohomogeneity two.





Sign in / Sign up

Export Citation Format

Share Document