On Higher Order Pyramidal Finite Elements

2011 ◽  
Vol 3 (2) ◽  
pp. 131-140 ◽  
Author(s):  
Liping Liu ◽  
Kevin B. Davies ◽  
Michal Křížek ◽  
Li Guan

AbstractIn this paper we first prove a theorem on the nonexistence of pyramidal polynomial basis functions. Then we present a new symmetric composite pyramidal finite element which yields a better convergence than the nonsymmetric one. It has fourteen degrees of freedom and its basis functions are incomplete piecewise triquadratic polynomials. The space of ansatz functions contains all quadratic functions on each of four subtetrahedra that form a given pyramidal element.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3827
Author(s):  
Marek Klimczak ◽  
Witold Cecot

In this paper, we present a new approach to model the steady-state heat transfer in heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is based on the natural parallelization of the main computations and their further simplifications due to the numerical nature of the problem. The approach does not require the distinct separation of scales, which makes its applicability to the numerical modeling of the composites very broad. Our novelty relies on modifications to the standard higher-order shape functions, which are then applied to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special shape function assessment) has not been previously used for an approximation order higher than p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some numerical results are presented and compared with the standard direct finite-element solutions. The first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is subject to heating. The second test is the challenging problem of metal foam analysis. The thermal conductivity of air and aluminum differ by several orders of magnitude, which is typically very difficult for the upscaling methods. A very good agreement between our upscaled and reference results was observed, together with a significant reduction in the number of degrees of freedom. The error analysis and the p-convergence of the method are also presented. The latter is studied in terms of both the number of degrees of freedom and the computational time.


Author(s):  
Karin Nachbagauer ◽  
Johannes Gerstmayr

For the modeling of large deformations in multibody dynamics problems, the absolute nodal coordinate formulation (ANCF) is advantageous since in general, the ANCF leads to a constant mass matrix. The proposed ANCF beam finite elements in this approach use the transverse slope vectors for the parameterization of the orientation of the cross section and do not employ an axial nodal slope vector. The geometric description, the degrees of freedom, and a continuum-mechanics-based and a structural-mechanics-based formulation for the elastic forces of the beam finite elements, as well as their usage in several static problems, have been presented in a previous work. A comparison to results provided in the literature to analytical solution and to the solution found by commercial finite element software shows accuracy and high order convergence in statics. The main subject of the present paper is to show the usability of the beam finite elements in dynamic and buckling applications.


Author(s):  
Bikramjit Singh Antaal ◽  
Yogeshwar Hari ◽  
Dennis K. Williams

This paper describes the finite element considerations employed in a seismic response spectrum analysis of a skirt supported, liquid containing pressure vessel. Like many axisymmetric cylindrical vessels, the gross seismic response to an input response spectrum can be categorized by a simplified lump mass model that includes both the mass of the vessel proper in combination with the associated mass of multiple fluid levels. This simplified response may be utilized to determine the initial sizing of the supporting configuration, such as a skirt, but lacks the ability to properly address the fluid-structure interaction that creates sloshing loads on the vessel walls. The most obvious method to address the fluid-structure interaction when considering the finite element method is to build a three-dimensional model of the vessel proper, including, but not limited to the shell courses, the top and bottom heads (for a vertical vessel), and the support skirt. The inclusion of the fluid effects may now be incorporated with a “contained fluid” finite element, however, for vessels of any significant volume, the number of finite elements can easily exceed 100,000 and the number of degrees of freedom can sore from as few as 300,000 to as many as 500,000 or more. While these types of finite element analysis problems can be solved with today’s computer hardware and software, it is not desirable in any analysis to have that volume of information that has to be reviewed and approved in a highly regulated nuclear QA environment (if at all possible). With these items in mind, the methodology described in this paper seeks to minimize the number of degrees of freedom associated with a response spectrum analysis of a liquid filled, skirt supported vertical pressure vessel. The input response spectra are almost always provided in Cartesian coordinates, while many, if not most liquid containing pressure vessels are almost always axisymmetric in geometry without having benefit of being subjected to an axisymmetric load (acceleration in this case) due to the specified seismic event. The use of harmonic finite elements for both the vessel structure and the contained fluid medium permit the efficiencies associated with an axisymmetric geometry to be leveraged when the seismic response spectrum is formulated in terms of a Fourier series and combined to regain the effects of the two orthogonal, horizontally applied accelerations as a function of frequency. The end result as discussed and shown in this paper is a finite element model that permits a dense mesh of both the fluid and the structure, while economizing on the number of simultaneous equations required to be solved by the chosen finite element analysis.


2019 ◽  
Vol 29 (06) ◽  
pp. 1037-1077 ◽  
Author(s):  
Ilona Ambartsumyan ◽  
Eldar Khattatov ◽  
Jeonghun J. Lee ◽  
Ivan Yotov

We develop higher order multipoint flux mixed finite element (MFMFE) methods for solving elliptic problems on quadrilateral and hexahedral grids that reduce to cell-based pressure systems. The methods are based on a new family of mixed finite elements, which are enhanced Raviart–Thomas spaces with bubbles that are curls of specially chosen polynomials. The velocity degrees of freedom of the new spaces can be associated with the points of tensor-product Gauss–Lobatto quadrature rules, which allows for local velocity elimination and leads to a symmetric and positive definite cell-based system for the pressures. We prove optimal [Formula: see text]th order convergence for the velocity and pressure in their natural norms, as well as [Formula: see text]st order superconvergence for the pressure at the Gauss points. Moreover, local postprocessing gives a pressure that is superconvergent of order [Formula: see text] in the full [Formula: see text]-norm. Numerical results illustrating the validity of our theoretical results are included.


2018 ◽  
Vol 18 (05) ◽  
pp. 1850070 ◽  
Author(s):  
S. Faroughi ◽  
E. Shafei ◽  
D. Schillinger

We present a computational study that develops isogeometric analysis based on higher-order smooth NURBS basis functions for the analysis of in-plane laminated composites. Focusing on the stress, vibration and stability analysis of angle-ply and cross-ply 2D structures, we compare the convergence of the strain energy error and selected stress components, eigen-frequencies and buckling loads according to overkill solutions. Our results clearly demonstrate that for in-plane laminated composite structures, isogeometric analysis is able to provide the same accuracy at a significantly reduced number of degrees of freedom with respect to standard [Formula: see text] finite elements. In particular, we observe that the smoothness of spline basis functions enables high-quality stress solutions, which are superior to the ones obtained with conventional finite elements.


2007 ◽  
Vol 04 (01) ◽  
pp. 141-162 ◽  
Author(s):  
V. BALAMURUGAN ◽  
B. MANIKANDAN ◽  
S. NARAYANAN

This paper presents a higher order — field consistent — piezolaminated 8-noded plate finite element with 36 elastic degrees-of-freedom per element and two electric degrees-of-freedom per element, one each for the piezoelectric sensor and actuator. The higher order plate theory used satisfies the stress and displacement continuity at the interface of the composite laminates and has zero shear stress on the top and bottom surfaces. The transverse shear deformation is of a higher order represented by the trigonometric functions allowing us to avoid the shear correction factors. In order to maintain the field consistency, the inplane displacements, u and v are interpolated using linear shape functions, the transverse displacement w is interpolated using hermite cubic interpolation function, while rotations θx and θy are interpolated using quadratic interpolation function. The element is developed to include stiffness and the electromechanical coupling of the piezoelectric sensor/actuator layers. The active vibration control performance of the piezolaminated smart composite plates has been studied by modeling them with the above element and applying various control strategies.


1998 ◽  
Vol 120 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Guan-Liang Qian ◽  
Suong V. Hoa ◽  
Xinran Xiao

In this paper, a higher order rectangular plate bending element based on a Higher Order Shear Deformation Theory (HSDT) is developed. The element has 4 nodes and 20 degrees of freedom. The transverse displacement is interpolated by using an optimized interpolation function while the additional rotation degrees of freedom are approximated by linear Lagrange interpolation. The consistent element mass matrix is used. A damped element is introduced to the finite element model. The proposed FEM is used to calculate eigenfrequencies and modal damping of composite plates with various boundary conditions and different thicknesses. The results show that the present FEM gives excellent results when compared to other methods and experiment results, and is efficient and reliable for both thick and thin plates. The proposed finite element model does not lock in the thin plate situation and does not contain any spurious vibration mode, and converges rapidly. It will provide a good basis for the inverse analysis of vibration of a structure.


2012 ◽  
Vol 463-464 ◽  
pp. 1242-1245 ◽  
Author(s):  
Nicolae Dumitru ◽  
Raluca Malciu ◽  
Madalina Calbureanu ◽  
Sorin Dumitru ◽  
Gabriel Cătălin Marinescu

The paper presents a method for studying mechanisms with deformable elements, based on overlapping the solid rigid motion over the elastic solid one, in order to identify the dynamic response of the system. Modeling was based on finite element method, so the cinematic elements were meshed in bar type finite elements and the degrees of freedom per node were settled according to the motion character (planar or spatial). A Lagrange formulation of the finite element was adopted for the deformable elements connected in multibody systems. In order to define the joints constraints, the conditions for compatibility between elements were defined using a Boolean constant matrix. Computer processed results were verified by an experimental model.


Sign in / Sign up

Export Citation Format

Share Document