scholarly journals The Effect of Helicity on Kinetic Energy Cascade in Compressible Helical Turbulence

2019 ◽  
Vol 11 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Zheng Yan
2021 ◽  
Author(s):  
Federica Gucci ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Nikki Vercauteren

<p>The broad variety of phenomena occurring on multiple scales under stably stratified conditions and their complex interactions make it difficult to get a full description of the Stable Boundary Layer (SBL). Near-surface turbulence may be intermittent and highly anisotropic even at small scales. By studying the invariants of the anisotropy Reynolds stress tensor, it is possible to analyse the eddy kinetic energy distribution over the three components of the flow. Recent analyses of SBL turbulence data highlighted a prevalence of one-component limiting state of anisotropy. The causes of this particular limiting state are not fully understood, but there is evidence that submeso activity influences turbulence topology.<span> </span></p><p>This open question motivated the present work, that addresses the issue from the point of view of space dimensionality. In large-scale atmospheric and oceanic dynamics it is well known that turbulent motions may transfer energy both to the large and to the small scales, according to density stratification and rotation. These two properties act as constraints on the flow, giving it a 2D structure, and leading turbulence to be more complex than the homogeneous and isotropic case. For a SBL in low-wind speed conditions, atmospheric stratification might be very strong and we investigate if some of the peculiar characteristics of this regime might be related to a quasi-2D dynamics, with the occurrence of an inverse energy cascade, typical of 2D-like turbulence.</p><p>Energy exchanges across larger and smaller scales are studied by analysing the direction of the momentum flux with different methods, including a coarse-graining approach based on Large Eddy Simulation (LES) theory. The SnoHATS dataset was used to this purpose, where two vertically-separated horizontal arrays of sonic anemometers over the Plaine Morte Glacier (Switzerland) allowed the computation of the full three-dimensional velocity gradient. In order to fully characterize the energy exchanges according to different states of turbulence anisotropy, energy conversion processes between eddy kinetic and potential energy have also been considered and analysed at different heights. To this purpose, the dataset FLOSSII was used, providing turbulence measurements up to 30 m above a flat grass surface, often covered by snow.<span> </span></p><p>Results seem to suggest that turbulent kinetic energy in the SBL is distributed mainly in one component more as a consequence of wave-turbulence interactions than of development of 2D-like turbulence. This gives insights on mechanisms driving turbulence anisotropy that might be used to improve turbulence parameterizations in the SBL.</p>


2010 ◽  
Vol 656 ◽  
pp. 448-457 ◽  
Author(s):  
ANDREAS VALLGREN ◽  
ERIK LINDBORG

High-resolution simulations of forced quasi-geostrophic (QG) turbulence reveal that Charney isotropy develops under a wide range of conditions, and constitutes a preferred state also in β-plane and freely decaying turbulence. There is a clear analogy between two-dimensional and QG turbulence, with a direct enstrophy cascade that is governed by the prediction of Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525) and an inverse energy cascade following the classic k−5/3 scaling. Furthermore, we find that Charney's prediction of equipartition between the potential and kinetic energy in each of the two horizontal velocity components is approximately fulfilled in the inertial ranges.


2021 ◽  
Vol 40 (7) ◽  
pp. 42-57
Author(s):  
Mengmeng Li ◽  
Zhiliang Liu ◽  
Jianing Li ◽  
Chongguang Pang

Author(s):  
Hongjie Li ◽  
Yongsheng Xu

AbstractStratified geostrophic turbulence theory predicts an inverse energy cascade for the barotropic (BT) mode. Satellite altimetry has revealed a net inverse cascade in the baroclinic (BC) mode. Here the spatial variabilities of BT and BC kinetic energy fluxes in the Antarctic Circumpolar Current (ACC) were investigated using ECCO2 data, which synthesizes satellite data and in situ measurements with an eddy-permitting general circulation models containing realistic bathymetry and wind forcing. The BT and BC inverse kinetic energy cascades both reveal complex spatial variations that could not be explained fully by classical arguments. For example, the BC injection scales match better with most unstable scales than with the first-mode deformation scales, but the opposite is true for the BT mode. In addition, the BT and BC arrest scales do not follow the Rhines scale well in term of spatial variation, but show better consistency with their own energy-containing scales. The reverse cascade of the BT and BC modes was found related to their EKE, and better correlation was found between the BT inverse cascade and barotropization. Speculations of the findings were proposed. however, further observations and modeling experiments are needed to test these interpretations. Spectral flux anisotropy exhibits a feature associated with oceanic jets that is consistent with classical expectations. Specifically, the spectral flux along the along-stream direction remains negative at scales up to that of the studied domain (~2000km), while that in the perpendicular direction becomes positive close to the scale of the width of a typical jet.


2007 ◽  
Vol 37 (3) ◽  
pp. 673-688 ◽  
Author(s):  
Robert B. Scott ◽  
Brian K. Arbic

Abstract The energy pathways in geostrophic turbulence are explored using a two-layer, flat-bottom, f-plane, quasigeostrophic model forced by an imposed, horizontally homogenous, baroclinically unstable mean flow and damped by bottom Ekman friction. A systematic presentation of the spectral energy fluxes, the mean flow forcing, and dissipation terms allows for a comprehensive understanding of the sources and sinks for baroclinic and barotropic energy as a function of length scale. The key new result is a robust inverse cascade of kinetic energy for both the baroclinic mode and the upper layer. This is consistent with recent observations of satellite altimeter data over the South Pacific Ocean. The well-known forward cascade of baroclinic potential and total energy was found to be very robust. Decomposing the spectral fluxes into contributions from different terms provided further insight. The inverse baroclinic kinetic energy cascade is driven mostly by an efficient interaction between the baroclinic velocity and the barotropic vorticity, the latter playing a crucial catalytic role. This cascade can be further enhanced by the baroclinic mode self-interaction, which is only present with nonuniform stratification (unequal layer depths). When model parameters are set such that modeled eddies compare favorably with observations, the inverse baroclinic kinetic energy cascade is actually much stronger than the well-known inverse cascade in the barotropic mode. The upper-layer kinetic energy cascade was found to dominate the lower-layer cascade over a wide range of parameters, suggesting that the surface cascade and time mean density stratification may be sufficient for estimating the depth-integrated cascade from ocean observations. This may find useful application in inferring the kinetic to gravitational potential energy conversion rate from satellite measurements.


2020 ◽  
Vol 50 (9) ◽  
pp. 2573-2589 ◽  
Author(s):  
René Schubert ◽  
Jonathan Gula ◽  
Richard J. Greatbatch ◽  
Burkard Baschek ◽  
Arne Biastoch

AbstractMesoscale eddies can be strengthened by the absorption of submesoscale eddies resulting from mixed layer baroclinic instabilities. This is shown for mesoscale eddies in the Agulhas Current system by investigating the kinetic energy cascade with a spectral and a coarse-graining approach in two model simulations of the Agulhas region. One simulation resolves mixed layer baroclinic instabilities and one does not. When mixed layer baroclinic instabilities are included, the largest submesoscale near-surface fluxes occur in wintertime in regions of strong mesoscale activity for upscale as well as downscale directions. The forward cascade at the smallest resolved scales occurs mainly in frontogenetic regions in the upper 30 m of the water column. In the Agulhas ring path, the forward cascade changes to an inverse cascade at a typical scale of mixed layer eddies (15 km). At the same scale, the largest sources of the upscale flux occur. After the winter, the maximum of the upscale flux shifts to larger scales. Depending on the region, the kinetic energy reaches the mesoscales in spring or early summer aligned with the maximum of mesoscale kinetic energy. This indicates the importance of submesoscale flows for the mesoscale seasonal cycle. A case study shows that the underlying process is the mesoscale absorption of mixed layer eddies. When mixed layer baroclinic instabilities are not included in the simulation, the open-ocean upscale cascade in the Agulhas ring path is almost absent. This contributes to a 20% reduction of surface kinetic energy at mesoscales larger than 100 km when submesoscale dynamics are not resolved by the model.


2014 ◽  
Vol 760 ◽  
pp. 39-62 ◽  
Author(s):  
P. C. Valente ◽  
C. B. da Silva ◽  
F. T. Pinho

AbstractDirect numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model, such as those laden with polymers, are presented. It is shown that the strong depletion of the turbulence dissipation reported by previous authors does not necessarily imply a depletion of the nonlinear energy cascade. However, for large relaxation times, of the order of the eddy turnover time, the polymers remove more energy from the large scales than they can dissipate and transfer the excess energy back into the turbulent dissipative scales. This is effectively a polymer-induced kinetic energy cascade which competes with the nonlinear energy cascade of the turbulence leading to its depletion. It is also shown that the total energy flux to the small scales from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the nonlinear energy cascade flux in Newtonian turbulence.


2015 ◽  
Vol 45 (1) ◽  
pp. 272-293 ◽  
Author(s):  
Roy Barkan ◽  
Kraig B. Winters ◽  
Stefan G. Llewellyn Smith

AbstractA large fraction of the kinetic energy in the ocean is stored in the “quasigeostrophic” eddy field. This “balanced” eddy field is expected, according to geostrophic turbulence theory, to transfer energy to larger scales. In order for the general circulation to remain approximately steady, instability mechanisms leading to loss of balance (LOB) have been hypothesized to take place so that the eddy kinetic energy (EKE) may be transferred to small scales where it can be dissipated. This study examines the kinetic energy pathways in fully resolved direct numerical simulations of flow in a flat-bottomed reentrant channel, externally forced by surface buoyancy fluxes and wind stress in a configuration that resembles the Antarctic Circumpolar Current. The flow is allowed to reach a statistical steady state at which point it exhibits both a forward and an inverse energy cascade. Flow interactions with irregular bathymetry are excluded so that bottom drag is the sole mechanism available to dissipate the upscale EKE transfer. The authors show that EKE is dissipated preferentially at small scales near the surface via frontal instabilities associated with LOB and a forward energy cascade rather than by bottom drag after an inverse energy cascade. This is true both with and without forcing by the wind. These results suggest that LOB caused by frontal instabilities near the ocean surface could provide an efficient mechanism, independent of boundary effects, by which EKE is dissipated. Ageostrophic anticyclonic instability is the dominant frontal instability mechanism in these simulations. Symmetric instability is also important in a “deep convection” region, where it can be sustained by buoyancy loss.


2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Zheng Yan ◽  
Xinliang Li ◽  
Changping Yu ◽  
Jianchun Wang

Sign in / Sign up

Export Citation Format

Share Document