scholarly journals Size Resolved Particle Number Emission Factors of Motorway Traffic Differentiated between Heavy and Light Duty Vehicles

2013 ◽  
Vol 13 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Carmen Nickel ◽  
Heinz Kaminski ◽  
Bryan Hellack ◽  
Ulrich Quass ◽  
Astrid John ◽  
...  
Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 243 ◽  
Author(s):  
Victor Valverde ◽  
Bernat Mora ◽  
Michaël Clairotte ◽  
Jelica Pavlovic ◽  
Ricardo Suarez-Bertoa ◽  
...  

Tailpipe emissions of a pool of 13 Euro 6b light-duty vehicles (eight diesel and five gasoline-powered) were measured over an extensive experimental campaign that included laboratory (chassis dynamometer), and on-road tests (using a portable emissions measurement system). The New European Driving Cycle (NEDC) and the Worldwide harmonised Light-duty vehicles Test Cycle (WLTC) were driven in the laboratory following standard and extended testing procedures (such as low temperatures, use of auxiliaries, modified speed trace). On-road tests were conducted in real traffic conditions, within and outside the boundary conditions of the regulated European Real-Driving Emissions (RDE) test. Nitrogen oxides (NOX), particle number (PN), carbon monoxide (CO), total hydrocarbons (HC), and carbon dioxide (CO2) emission factors were developed considering the whole cycles, their sub-cycles, and the first 300 s of each test to assess the cold start effect. Despite complying with the NEDC type approval NOX limit, diesel vehicles emitted, on average, over the WLTC and the RDE 2.1 and 6.7 times more than the standard limit, respectively. Diesel vehicles equipped with only a Lean NOX trap (LNT) averaged six and two times more emissions over the WLTC and the RDE, respectively, than diesel vehicles equipped with a selective catalytic reduction (SCR) catalyst. Gasoline vehicles with direct injection (GDI) emitted eight times more NOX than those with port fuel injection (PFI) on RDE tests. Large NOX emissions on the urban section were also recorded for GDIs (122 mg/km). Diesel particle filters were mounted on all diesel vehicles, resulting in low particle number emission (~1010 #/km) over all testing conditions including low temperature and high dynamicity. GDIs (~1012 #/km) and PFIs (~1011 #/km) had PN emissions that were, on average, two and one order of magnitude higher than for diesel vehicles, respectively, with significant contribution from the cold start. PFIs yielded high CO emission factors under high load operation reaching on average 2.2 g/km and 3.8 g/km on WLTC extra-high and RDE motorway, respectively. The average on-road CO2 emissions were ~33% and 41% higher than the declared CO2 emissions at type-approval for diesel and gasoline vehicles, respectively. The use of auxiliaries (AC and lights on) over the NEDC led to an increase of ~20% of CO2 emissions for both diesel and gasoline vehicles. Results for NOX, CO and CO2 were used to derive average on-road emission factors that are in good agreement with the emission factors proposed by the EMEP/EEA guidebook.


2019 ◽  
Vol 172 ◽  
pp. 1-9 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Tero Lähde ◽  
Yannis Drossinos

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 603 ◽  
Author(s):  
Madueño ◽  
Kecorius ◽  
Birmili ◽  
Müller ◽  
Simpas ◽  
...  

Poor air quality has been identified as one of the main risks to human health, especially in developing regions, where the information on physical chemical properties of air pollutants is lacking. To bridge this gap, we conducted an intensive measurement campaign in Manila, Philippines to determine the emission factors (EFs) of particle number (PN) and equivalent black carbon (BC). The focus was on public utility jeepneys (PUJ), equipped with old technology diesel engines, widely used for public transportation. The EFs were determined by aerosol physical measurements, fleet information, and modeled dilution using the Operational Street Pollution Model (OSPM). The results show that average vehicle EFs of PN and BC in Manila is up to two orders of magnitude higher than European emission standards. Furthermore, a PUJ emits up to seven times more than a light-duty vehicles (LDVs) and contribute to more than 60% of BC emission in Manila. Unfortunately, traffic restrictions for heavy-duty vehicles do not apply to PUJs. The results presented in this work provide a framework to help support targeted traffic interventions to improve urban air quality not only in Manila, but also in other countries with a similar fleet composed of old-technology vehicles.


2015 ◽  
Vol 122 ◽  
pp. 799-807 ◽  
Author(s):  
W. Ait-Helal ◽  
A. Beeldens ◽  
E. Boonen ◽  
A. Borbon ◽  
A. Boréave ◽  
...  

2011 ◽  
Vol 52 (8-9) ◽  
pp. 2945-2951 ◽  
Author(s):  
M.L.M. Oliveira ◽  
C.M. Silva ◽  
R. Moreno-Tost ◽  
T.L. Farias ◽  
Antonio Jiménez-López ◽  
...  

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Michaël Clairotte ◽  
Ricardo Suarez-Bertoa ◽  
Alessandro A. Zardini ◽  
Barouch Giechaskiel ◽  
Jelica Pavlovic ◽  
...  

Abstract Background Road transport is an important contributor to the European Union’s total greenhouse gas emissions. This study aims at summarizing methane (CH4) and nitrous oxide (N2O) exhaust emissions from L-category, light-duty and heavy-duty vehicles in the European Union. The assessment is based on measurements carried out in the Vehicle Emission Laboratory of the Joint Research Centre between 2009 and 2019. The exhaust chemical composition from a fleet of 38 L-category vehicles Euro 1 to Euro 4 (2- and 3-wheelers, small quadricycles such as quads and minicars), 63 light-duty vehicles from Euro 5b to Euro 6d-TEMP (passenger cars, including hybrid vehicles), and 27 light commercial and heavy-duty vehicles from pre-Euro I to Euro VI (including lorries, buses and garbage trucks) was analyzed by Fourier-transform infrared spectroscopy. Results CH4 emission factors monitored were from 1 to 234 mg/km for L-category vehicles (mean: 39 mg/km), from 0.1 to 40 mg/km for light-duty vehicles (mean: 7 mg/km), and from non-detectable to 320 mg/km for heavy-duty vehicles (mean: 19 mg/km). N2O emission factors monitored were from non-detectable to 5 mg/km for L-category vehicles (mean: 1 mg/km), from non-detectable to 40 mg/km for light-duty vehicles (mean: 7 mg/km), and from non-detectable to 118 mg/km for heavy-duty vehicles (mean: 19 mg/km). According to the 100-year Global Warming Potential of these greenhouse gases, these emissions corresponded to a range from negligible up to 9 g/km of CO2-equivalent for CH4 and from negligible up to 32 g/km of CO2-equivalent for N2O. Conclusions The higher contributors of CH4 were the two-stroke mopeds included in the L-category vehicles, while the higher emissions of N2O were found in the modern (Euro 5–6 or Euro V–VI) diesel light- and heavy-duty vehicles. Among them, vehicles complying with Euro 6 and Euro VI standard were associated to higher N2O emissions compared to those associated to Euro 5 and pre-Euro IV standards, which could be attributed to the introduction of the after-treatment systems designed to fulfill more stringent NOx standards. These updated emission factors and unique on its kind database represent a source of information for legislators and modelers to better assess the greenhouse gas emission reduction in the EU transport sector.


2020 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Alvaro Martinez-Valiente ◽  
Badr R'Mili ◽  
Baptiste Marques ◽  
Brice Temime-Roussel ◽  
...  

Abstract. Changes in engine technologies and after-treatment devices can profoundly alter the chemical composition of the emitted pollutants. To investigate these effects, we characterized the chemical composition of particles emitted from three diesel and four gasoline Euro 5 light duty vehicles on a chassis dynamometer facility. Black carbon (BC) was the dominant emitted species with emission factors (EFs) varying from 0.2 to 7.1 mg km−1 for gasoline cars and 0.003 to 0.08 mg km−1 for diesel cars. For gasoline cars, the organic matter (OM) EFs varied from 5 to 103 µg km−1 for direct injection (GDI) vehicles, and from 1 to 8 µg km−1 for port fuel injection (PFI) vehicles, while for the diesel cars it ranged between 0.15 and 65 µg km−1. Cold-start cycles and more specifically the first minutes of the cycle, contributed the largest fraction of the PM including BC, OM and Polycyclic Aromatic Hydrocarbons (PAHs). More than 40 PAHs, including methylated, nitro, oxygenated and amino PAHs were identified and quantified in both diesel and gasoline exhaust particles using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS). The PAHs emissions from the GDI technology were a factor of 4 higher compared to the vehicles equipped with a PFI system during the cold start cycle, while the nitro-PAHs fraction was much more appreciable in the GDI emissions. For two of the three diesel vehicles the PAHs emissions were close to the detection limit, but for one, which presented an after-treatment device failure, the average PAHs EF was 2.04 µg km−1. Emissions of nanoparticles (below 30 nm), mainly composed by ammonium bisulfate, were measured during the passive regeneration of the catalyzed diesel particulate filter (CDPF) vehicle. TEM images confirmed the presence of ubiquitous nanometric metal inclusions into soot particles emitted from the diesel vehicle equipped with a fuel borne catalyst – diesel particulate filter (FBC-DPF). XPS analysis of the particles emitted by the PFI car revealed both the presence of heavy elements (Ti, Zn, Ca, Si, P, Cl), and disordered soot surface with a significant concentration of carbon radical defects having possible consequences on both chemical reactivity and particle toxicity. Our findings show that different after-treatment technologies have an important effect on the level and the chemical composition of the emitted particles. In addition, this research highlights the importance of the particle filter devices condition and their regular checking.


Sign in / Sign up

Export Citation Format

Share Document