scholarly journals CZO Network water budget data products

2022 ◽  
Vol 26 (1) ◽  
pp. 35-54
Author(s):  
Fanny Lehmann ◽  
Bramha Dutt Vishwakarma ◽  
Jonathan Bamber

Abstract. The water budget equation describes the exchange of water between the land, ocean, and atmosphere. Being able to adequately close the water budget gives confidence in our ability to model and/or observe the spatio-temporal variations in the water cycle and its components. Due to advances in observation techniques, satellite sensors, and modelling, a number of data products are available that represent the components of water budget in both space and time. Despite these advances, closure of the water budget at the global scale has been elusive. In this study, we attempt to close the global water budget using precipitation, evapotranspiration, and runoff data at the catchment scale. The large number of recent state-of-the-art datasets provides a new evaluation of well-used datasets. These estimates are compared to terrestrial water storage (TWS) changes as measured by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. We investigated 189 river basins covering more than 90 % of the continental land area. TWS changes derived from the water balance equation were compared against GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the cyclostationary NSE. These metrics were used to assess the performance of more than 1600 combinations of the various datasets considered. We found a positive NSE and cyclostationary NSE in 99 % and 62 % of the basins examined respectively. This means that TWS changes reconstructed from the water balance equation were more accurate than the long-term (NSE) and monthly (cyclostationary NSE) mean of GRACE time series in the corresponding basins. By analysing different combinations of the datasets that make up the water balance, we identified data products that performed well in certain regions based on, for example, climatic zone. We identified that some of the good results were obtained due to the cancellation of errors in poor estimates of water budget components. Therefore, we used coefficients of variation to determine the relative quality of a data product, which helped us to identify bad combinations giving us good results. In general, water budget components from ERA5-Land and the Catchment Land Surface Model (CLSM) performed better than other products for most climatic zones. Conversely, the latest version of CLSM, v2.2, performed poorly for evapotranspiration in snow-dominated catchments compared, for example, with its predecessor and other datasets available. Thus, the nature of the catchment dynamics and balance between components affects the optimum combination of datasets. For regional studies, the combination of datasets that provides the most realistic TWS for a basin will depend on its climatic conditions and factors that cannot be determined a priori. We believe that the results of this study provide a road map for studying the water budget at catchment scale.


2020 ◽  
pp. 125927
Author(s):  
Zengliang Luo ◽  
Quanxi Shao ◽  
Wei Wan ◽  
Huan Li ◽  
Xi Chen ◽  
...  

2014 ◽  
Vol 27 (5) ◽  
pp. 2054-2071 ◽  
Author(s):  
Paula J. Brown ◽  
Christian D. Kummerow

Abstract Balancing global moisture budgets is a difficult task that is even more challenging at regional scales. Atmospheric water budget components are investigated within five tropical (15°S–15°N) ocean regions, including the Indian Ocean, three Pacific regions, and one Atlantic region, to determine how well data products balance these budgets. Initially, a selection of independent observations and a reanalysis product are evaluated to determine overall closure, between 1998 and 2007. Satellite-based observations from SeaFlux evaporation and Global Precipitation Climatology Project (GPCP) precipitation, together with Interim ECMWF Re-Analysis (ERA-Interim) data products, were chosen. Freshwater flux (evaporation minus precipitation) observations and reanalysis atmospheric moisture divergence regional averages are assessed for closure. Moisture budgets show the best closure over the Indian Ocean with a correlation of 89% and an overall imbalance of −3.0% of the anomalies. Of the five regions, the western Pacific Ocean region produces the worst atmospheric moisture budget closure of −21.1%, despite a high correlation of 93%. Average closure over the five regions is within 8.1%, and anomalies are correlated at 83%. ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications (MERRA) evaporation rates are 29 and 19 mm month−1 greater than SeaFlux, respectively. To diagnose the differences, wind speed and humidity gradients of the three products are compared utilizing the bulk formula for evaporation. SeaFlux wind speeds are higher, but sea–air humidity gradients are lower. Higher humidity gradients in the reanalyses are due to much dryer near-surface air in ERA-Interim, and the same to a lesser degree in MERRA. These differences counteract each other somewhat, but overall humidity biases exceed wind biases. This is consistent with buoy observations.


Author(s):  
C. G. Eger ◽  
D. G. Chandler ◽  
B. Kasaee Roodsari ◽  
C. I. Davidson ◽  
C. T. Driscoll

2015 ◽  
Vol 1 (5) ◽  
pp. 235-242
Author(s):  
Édio Damásio da Silva Júnior ◽  
Rogério de Araújo Almeida ◽  
Elisa Rodrigues Siqueira ◽  
Ábio Roduvalho da Silva

2011 ◽  
Vol 3 (6) ◽  
pp. 267-269
Author(s):  
P. T. Patil P. T. Patil ◽  
◽  
M. M. Jamadar M. M. Jamadar ◽  
N. A. Jamadar N. A. Jamadar
Keyword(s):  

Author(s):  
V. G. Sister ◽  
F. A. Polivoda ◽  
V. P. Scherbakov ◽  
A. I. Yamchuk ◽  
L. A. Shatrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document