scholarly journals Annual mean water quality metrics for catchments draining to German drinking water reservoirs

Geografie ◽  
1997 ◽  
Vol 102 (1) ◽  
pp. 42-49
Author(s):  
Ladislav Buzek

As much as 80 % of drinking water for Ostrava Metropolitan Area comes from surface sources. Lack of water occurred in the post-war years when industrialization was in progress and the drinking water quality deteriorated significantly. As a result, two drinking water reservoirs have been constructed in the central part of Moravskoslezské Beskydy Mts.: Šance Reservoir on the upper course of Ostravice and Morávka Reservoir on the river of same name. Both are situated in a mountainous terrain amidst deep forests. At present, however, reservoirs are threatened by siltation due to increased soil erosion.


2013 ◽  
Vol 13 (2) ◽  
pp. 349-357
Author(s):  
I. Slavik ◽  
W. Uhl ◽  
B. Skibinski ◽  
S. Rolinski ◽  
T. Petzoldt ◽  
...  

Dammed drinking water reservoirs with their catchment areas and the downstream rivers are dynamic systems that change permanently under the influence of many factors. Their multifunctional use for drinking water supply, flood control, energy production, nature conservation and recreation as well as ecological constraints for the rivers downstream requires an integrative management considering and balancing between different requirements. Thus, an optimal reservoir management has to take into account scenarios of external influences and must be based on predictions of prospective raw water qualities. Furthermore, the impacts of short- and long-term changes of the raw water quality on drinking water treatment have to be considered. The problem is very complex and cannot be solved intuitively but requires the application of hydrological, ecological and process models. This approach was followed in the work presented here, as a tool to predict and evaluate the impacts of different reservoir management strategies in an integrative way is currently not available. The developed decision support procedure (DSP) allows for the estimation of the effects of different hydrological and water quantity management scenarios on raw water quality, water processing costs and ecology in the downstream river. Extreme hydrological events or changing boundary conditions (e.g. climate change) are taken into account.


2021 ◽  
Author(s):  
Jack Waterhouse ◽  
Thomas Kjeldsen ◽  
Lee Bryant

<p>Thermal destratification of lakes and reservoirs is a primary control on dissolved-oxygen levels below the thermocline. In such waterbodies, internal biogeochemical processes are often controlled by a complex set of oxygen-controlled forcing mechanisms. Therefore, preventing stratification by artificial processes has long been an important tool in maintaining dissolved oxygen concentrations and corresponding water quality and ecosystem health in drinking water reservoirs. Blagdon Lake in Somerset, SW England is a medium-size (1.8km<sup>2</sup>), shallow depth (max: 13.1m) drinking water reservoir. An extensive 6-month field campaign was undertaken in the summer of 2019 at the reservoir, measuring depth profiles of dissolved oxygen, turbidity, conductivity, temperature and pH using an EXO3 multiparameter sonde and a CastAway® CTD. In addition, two thermistor chains were permanently installed measuring temperature and dissolved oxygen concentrations using Onset TidbiT v2 loggers (1m depth intervals) through the water column at 30-minute temporal resolution and a miniDOT oxygen logger at the sediment-water interface respectively. These thermistor chains collected data from summer 2019 – autumn 2020. The data from this field campaign were analysed to investigate the effectiveness of the installed bubble-plume destratification system present at Blagdon Lake, SW England. Similar systems are used in 66% of UK reservoirs employing artificial mixing infrastructure, though very little has been published evaluating their effectiveness in such temperate, shallow, drinking water reservoirs. Initial analysis of the results indicates that the bubble-plume system, nor wind shear is effectively preventing spring/summer destratification for long periods, and that neither are the main factor controlling thermal stratification in Blagdon Lake. The data provides a unique opportunity to directly assess the impact of bubble-plume aerators and their effectiveness at thermal destratification to control dissolved oxygen and water quality in temperate, shallow water bodies.</p>


2010 ◽  
Vol 10 (5) ◽  
pp. 783-792 ◽  
Author(s):  
I. Slavik ◽  
W. Uhl ◽  
J. Völker ◽  
H. Lohr ◽  
M. Funke ◽  
...  

Dammed water reservoirs for drinking water production with their catchment areas and rivers downstream represent dynamic systems that change constantly and are subject to many influences. An optimized management considering and weighing up the various demands on raw water reservoirs (long-term storage for drinking water supply, flood control, ecological state of the rivers downstream, energy production, nature conservation and recreational uses) against each other is therefore very difficult. Thus, an optimal reservoir management has to take into account scenarios of possibly occurring external influences and to permit predictions of prospective raw water qualities, respectively. Furthermore, the impact of short and long term changes in raw water quality on subordinate processes should be considered. This approach was followed in the work presented here, as there currently is no tool available to predict and evaluate the impacts of raw water reservoir management strategies integratively. The strategy supported by the newly developed decision support procedure takes into account all aspects from water quality, flood control and drinking water treatment to environmental quality downstream the reservoir. Furthermore, possible extreme events or changes of boundary conditions (e.g. climate change) can be considered.


2000 ◽  
Vol 26 (6) ◽  
pp. 607-614 ◽  
Author(s):  
Bilsen Beler Baykal ◽  
Aysegul Tanik ◽  
I. Ethem Gonenc

2010 ◽  
Vol 1 (1-2) ◽  
pp. 51-54
Author(s):  
J. Fettig

Abstract The structure of public water supply in Germany and the water resources used are briefly described. An overview over the legal requirements for drinking water is given, and the sources for contaminants are outlined. Then the multiple-barrier approach is discussed with respect to the resources groundwater and spring water, lake and reservoir water, and river water. Examples for treatment schemes are given and the principle of subsurface transport of river water as a first treatment step is described.


2016 ◽  
Vol 15 (2) ◽  
pp. 435-442 ◽  
Author(s):  
Wendong Wang ◽  
Shan Song ◽  
Zixia Qiao ◽  
Qin Yang ◽  
Mengmeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document