scholarly journals A Data-Driven Adaptive Method for Attitude Control of Fixed-Wing Unmanned Aerial Vehicles

2019 ◽  
Vol 04 (01) ◽  
pp. 1-15
Author(s):  
Meili Chen ◽  
Yuan Wang
2018 ◽  
Vol 29 (4) ◽  
pp. 1132-1149 ◽  
Author(s):  
Deyuan Liu ◽  
Hao Liu ◽  
Zhaoying Li ◽  
Xiaolei Hou ◽  
Qingling Wang

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 208 ◽  
Author(s):  
Sergio Garcia-Nieto ◽  
Jesus Velasco-Carrau ◽  
Federico Paredes-Valles ◽  
Jose Salcedo ◽  
Raul Simarro

This paper gathers the design and implementation of the control system that allows an unmanned Flying-wing to perform a Vertical Take-Off and Landing (VTOL) maneuver using two tilting rotors (Bi-Rotor). Unmanned Aerial Vehicles (UAVs) operating in this configuration are also categorized as Hybrid UAVs due to their ability of having a dual flight envelope: hovering like a multi-rotor and cruising like a traditional fixed-wing, providing the opportunity of facing complex missions in which these two different dynamics are required. This work exhibits the Bi-Rotor nonlinear dynamics, the attitude tracking controller design and also, the results obtained through Hardware-In-the-Loop (HIL) simulation and experimental studies that ensure the controller’s efficiency in hovering operation.


2019 ◽  
Vol 55 (6) ◽  
pp. 3442-3453 ◽  
Author(s):  
Kenneth Thompson ◽  
Yunjun Xu ◽  
Benjamin T. Dickinson

Author(s):  
Yongpeng Weng ◽  
Dong Nan ◽  
Ning Wang ◽  
Zhuofu Liu ◽  
Zhe Guan

In this paper, the robust trajectory tracking control problem of disturbed quadrotor unmanned aerial vehicles (UAVs) with disturbances, uncertainties and unmodeled dynamics is addressed, by devising a novel compound robust tracking control (CRTC) approach via data-driven cascade control technique. By deploying the data-driven philosophy, a data-based sliding-mode surface is proposed, and thereby contributing to strong adaptability to nonlinearity and model-unknown properties of the UAVs. By utilizing the backstepping technique, virtual control strategy and a novel cascaded compound robust PD control structure, the attitude and position subsystems are efficiently cohered such that a data-driven cascaded compound robust controller containing both PD control and sliding-mode control can be developed to conquer the lumped disturbances induced by uncertainties, disturbances and unmodeled dynamics. Eventually, the asymptotic convergence of the tracking errors with respect to both attitude and position subsystems can be guaranteed rigorously. Simulation studies on a prototype quadrotor UAV are performed to evaluate the efficacy and superiority of the devised CRTC method.


Sign in / Sign up

Export Citation Format

Share Document