scholarly journals Shade-Inducible Gene Expression Change in <i>Arabidopsis thaliana</i> at Different Temperatures

2016 ◽  
Vol 07 (02) ◽  
pp. 352-423
Author(s):  
ByungHoon B. Kim ◽  
Kaiesa L. Peets ◽  
Jamekia S. Grant ◽  
Joshua S. Hicks ◽  
Dominique C. Zellous ◽  
...  
2003 ◽  
Vol 14 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Michelle M. Riehle ◽  
Albert F. Bennett ◽  
Richard E. Lenski ◽  
Anthony D. Long

The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high temperature (41.5°C) for 2,000 generations. These lines exhibited significant changes in heat-inducible gene expression relative to their ancestor, including parallel changes in fkpA, gapA, and hslT. As a group, the heat-inducible genes were significantly more likely than noncandidate genes to have evolved changes in expression. Genes encoding molecular chaperones and ATP-dependent proteases, key components of the cytoplasmic stress response, exhibit relatively little expression change; whereas genes with periplasmic functions exhibit significant expression changes suggesting a key role for the extracytoplasmic stress response in the adaptation to high temperature. Following acclimation at 41.5°C, two of the three lines exhibited significantly improved survival at 50°C, indicating changes in inducible thermotolerance. Thus evolution at high temperature led to significant changes at the molecular level in heat-inducible gene expression and at the organismal level in inducible thermotolerance and fitness.


Sign in / Sign up

Export Citation Format

Share Document