scholarly journals Triple Cropping Systems of Spring Maize, Tropical Grass of Teff (<i>Eragrostis tef</i>) and Winter Cereal Crops to Combine Total Digestible Nutrient Yield with Protein Concentration in Southern Kyushu, Japan

2018 ◽  
Vol 09 (01) ◽  
pp. 129-140
Author(s):  
Yukimi Nakata ◽  
Sachiko Idota ◽  
Manabu Tobisa ◽  
Yasuyuki Ishii
2021 ◽  
pp. 41-48
Author(s):  
Halina A. Kamyshenka

The results of a statistical assessment of the influence of changing weather and climatic conditions of the territory of Belarus on the productivity of the main winter cereal crops are presented in order to build computational models of productivity. The calculations were made with respect to the climatic component as a predictor, taking into account the deviations of air temperature and precipitation from the long-term climatic norm of months that have the most significant effect on the yield of the studied crops. For winter rye and wheat, adequate models of yield variability have been built. The research results are relevant for solving forecasting problems.


2016 ◽  
Vol 67 (10) ◽  
pp. 1054 ◽  
Author(s):  
Eva Beoni ◽  
Jana Chrpová ◽  
Jana Jarošová ◽  
Jiban Kumar Kundu

A survey of Barley yellow dwarf virus (BYDV) incidence in cereal crops in the Czech Republic over 4 years showed, on average, 13.3% BYDV-positive, randomly tested wheat and barley samples. The cultivated wheat and barley cultivars had different levels of susceptibility to BYDV infection. Field trials were performed with different barley and wheat breeding lines and cultivars, and resistance traits were evaluated after artificial inculcation by the viruliferous aphid vector Rhopalosiphum padi L. with BYDV-PAV. Our results showed high variability of visual symptom score (VSS) and reduction in grain weight per spike (GWS-R) in trials within the tested lines and cultivars. The barley line (WBON 96-123) and cultivars (Wysor, Travira) that contained RYd2 differed significantly from other cultivars in VSS. Line WBON 96-123 and cvv. Wysor and Yatzi showed the lowest GWS-R. Wheat line PSR 3628 and cvv. Altigo, Elan, Sparta, Aladin and Hewit showed significant difference from other cultivars in VSS. PSR 3628, Sparta, and Elan showed the lowest GWS-R. Similar results were obtained from BYDV titre analysis by RT-qPCR corresponding to the VSS and GWS-R traits. A low virus titre corresponded to low VSS and GWS-R. Hence, our results suggest that laborious and time-consuming GWS-R analysis could be replaced in some cases by qPCR-based BYDV titre analysis and, together with VSS evaluation, could enhance the efficiency of resistance assessment.


Soil Research ◽  
1995 ◽  
Vol 33 (1) ◽  
pp. 101 ◽  
Author(s):  
UK Avalakki ◽  
WM Strong ◽  
PG Saffigna

Field experiments were conducted during autumn and winter (April-July) at four locations on Vertisol or Alfisol soils on the Darling Downs of Queensland in 1988 and 1989 to determine 15N losses when soil was saturated after applications of 15N labelled nitrate-N prior to sowing winter cereal crops. Losses of applied 15N were quantified by either gas emission or mass balance measurements on microplots (0.043 m2) confined laterally to a depth of 110 or 260 mm. At each field location, two experiments were established, one on a soil containing little visible crop residue where winter cereal had been harvested the previous November and another site containing residues of a recently harvested sorghum crop. Because shallow (110 mm) confinement was found to be unsatisfactory for both gas emission and mass balance measurement of 15N losses, comparison of the two methods was not applicable at one of the four field locations. Loss estimates for the six field sites by accumulating daily gas emissions averaged 80.7 � 33.4% (range 43-132%) of that estimated by mass balance. Loss estimates from peak emission measurements were generally closer to that estimated by mass balance 100.8� 39.9% (range 56-169%). Loss of applied 15N (40 kg N ha-1) when soils were saturated in April was several-fold more (19-29 kg N ha-1)) than that lost when soils were saturated in July (3.9-6.4 kg N ha-1)). Loss of 15N following saturation during July 1988 was similar in magnitude to the quantity of 15N apparently immobilized into soil organic forms (5.8-6.0 kg N ha-1)). Sorghum residues returned in March, or wheat straw added in December prior to a long period of dry weather, promoted loss of 15N applied prior to soil saturation in April or July. Alternatively, where residues of a previous winter cereal had decomposed considerably, loss of applied 15N was much lower than where sorghum residues had been added prior to saturations in April (15.3 cf. 28.6 kg N ha-1)) or July (3.9 cf. 6.4 kg N ha-1)).


2020 ◽  
Vol 21 ◽  
pp. 00006
Author(s):  
Alexander Zhukovskiy ◽  
Natalia Krupenko ◽  
Yana Yakhnik ◽  
Olga Tarancheva ◽  
Galina Volkova

The article presents an analysis of the distribution and development of pink snow mold (pathogen Microdochium nivale (Fr.) Samuels & I.C. Hallett) on winter cereal crops in the Republic of Belarus and in the South of Russia. Pink snow mold is currently one of the most harmful diseases of winter cereal crops, as it can cause damage not only to various parts of the plants, but also lead to their complete death. The intensity of the disease development mainly depends on weather conditions in the autumn-spring period, namely, on the duration of snow cover, its height and the rate of melting in spring. We determined the dependence of the disease development progress on agroclimatic conditions. There is a description of weather conditions in combination with a gradation of the disease development level in the Republic of Belarus and in Krasnodar Krai (southern Russia) during the epiphytotic and depressive years of the pink snow mold development. The article provides a retrospective analysis of the crops infected with pink snow mold and the treated cereal crops in southern Russia in 2011 -2019.


2009 ◽  
Vol 114 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Hiroshi Nakano ◽  
Ikuo Hattori ◽  
Kenzi Sato ◽  
Satoshi Morita

Author(s):  
R. Sikka ◽  
Simranpreet Kaur ◽  
R.K. Gupta

Background: Soybean-wheat is the most dominant soybean based cropping system and it also fits well in soybean-spring maize and soybean-gobhi sarson cropping systems. Soybean being a highly nutrient-exhaustive crop requires higher amounts of nutrients, particularly phosphorus for its optimum production. Thus, the present investigation was undertaken. Methods: A field experiment was conducted for three years to study the effect of phosphorous application on yield and P uptake by soybean in different cropping systems. There were three cropping systems which were kept in main plots and five P levels viz., 0, 20, 40, 60 and 80 kg P2O5 ha-1 applied to soybean which were kept in the sub plot. Result: Application of 80 kg P2O5 ha-1 resulted in highest mean seed yield of soybean (20.9 qha-1) but significant response was observed up to 40 kg P2O5 ha-1 (19.8 qha-1) only. Highest mean seed P uptake of soybean was observed under application of 80 kg P2O5 ha-1. The mean seed yield, stover yield and P uptake of soybean was not affected significantly under different cropping systems. The interaction effects of cropping system and applied P levels were however non-significant. A significant build-up of available P in surface soil over control was observed under 80 kg P2O5 ha-1 level.


Sign in / Sign up

Export Citation Format

Share Document