scholarly journals Shear Failure Criterion and Constant Volume Ring Shear Testing Method for Clayey Soil

Engineering ◽  
2016 ◽  
Vol 08 (08) ◽  
pp. 545-560
Author(s):  
Rafig Azzam
2021 ◽  
Vol 45 (2) ◽  
pp. 20210125
Author(s):  
Jiarui Chen ◽  
Scott M. Olson ◽  
Soham Banerjee ◽  
Mandar M. Dewoolkar ◽  
Yves Dubief

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Song Leng ◽  
Li Hou ◽  
Yang Duan

An explicit analytical workflow for cylindrical hole stability analyses in general laminated materials that possess transversely isotropic (TI) anisotropy is presented. In this approach, the calculation of the distribution of the stresses around a cylindrical hole and the failure evaluation at the hole wall consider the effects of both material elasticity anisotropy and strength anisotropy caused by material laminated structures. Material strength anisotropy is assumed to be caused by the sliding of preexisting weakness planes oriented parallel to the isotropic plane of the material. The effect of anisotropy on strength is modeled by combining a shear failure criterion for the intact matrix and a weak plane failure criterion for the planes of weakness. We derive critical pressure solutions for the stability of the intact matrix around a hole filled with gas or fluid based on the Mohr–Coulomb failure criterion and Drucker–Prager failure criterion; either one of them can be combined with the weak plane failure criterion to give the solution for hole wall shear failure pressure. The solution for hole wall fracture initiation pressure is derived based on the tensile failure criterion. This approach can be applied to holes of arbitrary orientation in general laminated materials.


2020 ◽  
Vol 44 (5) ◽  
pp. 20200117
Author(s):  
Timothy D. Stark ◽  
Jack A. Cadigan ◽  
Navid H. Jafari

2013 ◽  
Vol 639-640 ◽  
pp. 850-853
Author(s):  
Chuan Sheng Chen ◽  
Hong Bin Xiao

It is commonly considered that liquefaction of sandy soils is the important reason for earthquake-induced landslides,but it has been reported liquefaction phenomenon can also occur in clayey soils in the recent research. In order to clarify liquefaction potential in clayey soils ,a deeper study was conducted on the basis of field investigation and a series of laboratory tests including undrained cyclic ring-shear tests on the clayey soil samples collected from the sliding zone of the Wenchuan earthquake-induced landslides. Results show that the liquefaction potential of clayey soils is lower than that of sandy soils given the same void ratio; the soil resistance to liquefaction rises with an increase in plasticity for clayey soils; It is useful to estimate the liquefaction potential of soil by means of plasticity index and the liquefaction potential of soil in practical engineering applications.


2010 ◽  
Vol 47 (5) ◽  
pp. 497-515 ◽  
Author(s):  
Abouzar Sadrekarimi ◽  
Scott M. Olson

In this paper, particle damage of three test sands with different mineralogical compositions is studied using stress–displacement response measured in ring shear tests, particle-size distributions of the original sand prior to shear and from the shear band after shear, and by examining particle shape changes determined by scanning electron microscope. Particle damage during shearing produced a wider particle-size distribution, and damage typically continued until the normal stress was small (about 28 kPa) in constant volume ring shear tests and the internal stresses were distributed among sufficient particle contacts such that damage practically ceased. The dominant damage mechanism (typically either particle abrasion and shearing-off asperities or particle splitting) depended strongly on the soil response (i.e., contraction or dilation), particle hardness, and particle-size distribution, but both mechanisms produced particles that were more angular and rougher than the original sand particles. The magnitude of particle damage observed in the ring shear tests was influenced by the consolidation normal stress, shear displacement, particle mineralogy, particle-size distribution, drainage conditions, and soil fabric (in constant volume tests). Lastly, the influence of particle damage on engineering properties including hydraulic conductivity, liquefaction resistance, stress–strain response, friction angle, and critical state are briefly discussed.


2019 ◽  
Vol 92 ◽  
pp. 16004
Author(s):  
Pierre Gerard ◽  
Ian Murray ◽  
Alessandro Tarantino

Many experimental evidences suggest that desiccation cracks in clay initiate as a result of the mobilization of soil tensile strength. However this mechanical approach disregards the cohesionless and effective stress-dependent behaviour of fine-grained soil. On the other hand recent findings in the literature suggest that effective stress-dependent shear failure criteria would be appropriate to explain the mechanisms of desiccation cracking for tensile total stress states. This work aims at assessing the validity of a shear failure criterion to predict the onset of cracking in clay forms exposed to air drying. Clay forms of various geometries were experimentally subjected to non-uniform hydraulic and mechanical boundary conditions. Time and location for crack initiation are monitored using a digital camera. Cracking experiments are then modelled in a hydro-mechanical framework using an effective-stress shear failure criterion. The comparison of simulations with experimental results for both the time and the location of cracking allows assuming that cracking occurs due to failure in shearing.


Sign in / Sign up

Export Citation Format

Share Document