scholarly journals Koide Lepton Relation Explained by Lepton Radius (Compton Wavelength)/4

2021 ◽  
Vol 12 (14) ◽  
pp. 1954-1959
Author(s):  
T. R. Mongan
Keyword(s):  
Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


2013 ◽  
Vol 23 ◽  
pp. 373-378
Author(s):  
PETR JIZBA ◽  
FABIO SCARDIGLI

We show how a Brownian motion on a short scale can originate a relativistic motion on scales larger than particle's Compton wavelength. Special relativity appears to be not a primitive concept, but rather it statistically emerges when a coarse graining average over distances of order, or longer than the Compton wavelength is taken. Our scheme accommodates easily also the doubly special relativistic dynamics. A previously unsuspected, common statistical origin of the two frameworks is brought to light for the first time.


1994 ◽  
Vol 50 (12) ◽  
pp. 8872-8874 ◽  
Author(s):  
H. N. Nazareno ◽  
J. C. Gallardo
Keyword(s):  

2018 ◽  
Vol 10 (4) ◽  
pp. 102
Author(s):  
Gordon R. Kepner

No report in the literature has directly described this relation. New constants for particles are presented. One relates to the Compton wavelength, called here the “mass-wave” constant for all particles. The other relates to the deBroglie wavelength, called here the “velocity-wave” constant for a particle. An equation is derived based on these two constants encapsulating a fundamental relation between the matter-states, particle and wave, to the velocity of light. New approaches to the Uncertainty relations are shown. The basic Schrodinger equation is derived from the perspective of a non-dimensional second-order differential equation free of any assumed empirical constants. The resulting time-dependent wave equation for a free particle was then expressed in terms of the particle velocity and deBroglie wavelength.


1977 ◽  
Vol 32 (1) ◽  
pp. 101-102
Author(s):  
M. Sorg

Abstract A new semi-classical equation of motion is suggested for the radiating electron. The characteristic length of the new theory is the Compton wavelength λc(= ħ/2 m c) instead of the classical electron radius which is used in all purely classical theories of the radiating electron. However, the lowest order approximation of the radiation reaction contains only the classical radius rc.


2001 ◽  
Vol 16 (11) ◽  
pp. 693-706 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
SALVATORE DE MARTINO ◽  
SILVIO DE SIENA ◽  
FABRIZIO ILLUMINATI

We show that the characteristic sizes of astrophysical and cosmological structures, where gravity is the only overall relevant interaction assembling the system, have a phenomenological relation to the microscopic scales whose order of magnitude is essentially ruled by the Compton wavelength of the proton. This result agrees with the absence of screening mechanisms for the gravitational interaction and could be connected to the presence of Yukawa correcting terms in the Newtonian potential which introduces typical interaction lengths. Furthermore, we are able to justify, in a straightforward way, the Sanders-postulated mass of a vector boson considered in order to obtain the characteristic sizes of galaxies.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Stefano Longhi

A photonic analogue of Klein tunneling (KT), that is, of the exotic property of relativistic electrons to pass a large repulsive and sharp potential step, is proposed for pulse propagation in a nonuniform fiber Bragg grating with an embedded chirped region. KT can be simply observed as the opening of a transmission window inside the grating stop band, provided that the impressed chirp is realized over a length of the order of the analogue of the Compton wavelength.


2012 ◽  
Vol 26 (12) ◽  
pp. 1241003 ◽  
Author(s):  
PETR JIZBA ◽  
FABIO SCARDIGLI

Using the concept known as a superstatistics path integral we show that a Wiener process on a short spatial scale can originate a relativistic motion on scales that are larger than particle's Compton wavelength. Viewed in this way, special relativity is not a primitive concept, but rather it statistically emerges when a coarse graining average over distances of order, or longer than the Compton wavelength is taken. Here we place a special emphasis on the modifications that are necessary to accommodate in our scheme the doubly special relativistic dynamics. In this way, a previously unsuspected, common statistical origin of the two frameworks is revealed. Salient issues such as generalized commutation relations and a connection with Feynman chessboard model are also discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Antonio Aurilia ◽  
Euro Spallucci

We propose a quantum gravity-extended form of the classical length contraction law obtained in special relativity. More specifically, the framework of our discussion is the UV self-complete theory of quantum gravity. We show how our results are consistent with (i) the generalized form of the uncertainty principle (GUP), (ii) the so-called hoop-conjecture, and (iii) the intriguing notion of “classicalization” of trans-Planckian physics. We argue that there is a physical limit to the Lorentz contraction rule in the form of some minimal universal length determined by quantum gravity, say the Planck Length, or any of its current embodiments such as the string length, or the TeV quantum gravity length scale. In the latter case, we determine the critical boost that separates the ordinary “particle phase,” characterized by the Compton wavelength, from the “black hole phase,” characterized by the effective Schwarzschild radius of the colliding system.


Sign in / Sign up

Export Citation Format

Share Document