scholarly journals Role of Sphingosine 1-Phosphate (S1P) Receptor 1 in Experimental Autoimmune Encephalomyelitis —I

2013 ◽  
Vol 04 (08) ◽  
pp. 628-637 ◽  
Author(s):  
Noriyasu Seki ◽  
Yasuhiro Maeda ◽  
Hirotoshi Kataoka ◽  
Kunio Sugahara ◽  
Kenji Chiba
2013 ◽  
Vol 04 (08) ◽  
pp. 638-646 ◽  
Author(s):  
Noriyasu Seki ◽  
Hirotoshi Kataoka ◽  
Kunio Sugahara ◽  
Atsushi Fukunari ◽  
Kenji Chiba

2018 ◽  
Vol 19 (11) ◽  
pp. 3647 ◽  
Author(s):  
Takako Takemiya ◽  
Marumi Kawakami ◽  
Chisen Takeuchi

Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for the production of prostaglandin E2 (PGE2). In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs) around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore, we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1−/−) mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions in the spinal cord, and this was significantly higher in wt mice than in mPGES-1−/− mice. In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice than in mPGES-1−/− mice. Moreover, endothelial PGE2 receptors (E-prostanoid (EP) receptors EP1–4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs. Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore, mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production, modulating mPGES-1 induction in EAE.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Hong-Liang Zhang ◽  
Jiang Wu ◽  
Jie Zhu

Apolipoprotein E (apoE) is a 34.2 kDa glycoprotein characterized by its wide tissue distribution and multiple functions. The nonlipid-related properties of apoE include modulating inflammation and oxidation, suppressing T cell proliferation, regulating macrophage functions, and facilitating lipid antigen presentation by CD1 molecules to natural killer T (NKT) cells, and so forth. Increasing studies have revealed that APOEεallele might be associated with multiple sclerosis (MS), although evidence is still not sufficient enough. In this review, we summarized the current progress of the immunomodulatory functions of apoE, with special focus on the association of APOEεallele with the clinical features of MS and of its animal model experimental autoimmune encephalomyelitis (EAE).


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59630 ◽  
Author(s):  
Andreas Billich ◽  
Thomas Baumruker ◽  
Christian Beerli ◽  
Marc Bigaud ◽  
Christian Bruns ◽  
...  

2017 ◽  
Vol 3 (1) ◽  
pp. 205521731769018 ◽  
Author(s):  
Bert A ’t Hart ◽  
Yolanda S Kap

Infection with Epstein–Barr virus (EBV) has been associated with an enhanced risk of genetically susceptible individuals to develop multiple sclerosis (MS). However, an explanation for the contrast between the high EBV infection prevalence (60–90%) and the low MS prevalence (0.1%) eludes us. Here we propose a new concept for the EBV–MS association developed in the experimental autoimmune encephalomyelitis model in marmoset monkeys, which are naturally infected with the EBV-related γ1-herpesvirus CalHV3. The data indicate that the infection of B cells with a γ1-herpesvirus endows them with the capacity to activate auto-aggressive CD8+ T cells specific for myelin oligodendrocyte glycoprotein.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Paula Sanchis ◽  
Olaya Fernández-Gayol ◽  
Gemma Comes ◽  
Kevin Aguilar ◽  
Anna Escrig ◽  
...  

Abstract Background Interleukin-6 (IL-6) is a pleiotropic cytokine that controls numerous physiological processes both in basal and neuroinflammatory conditions, including the inflammatory response to experimental autoimmune encephalomyelitis (EAE). IL-6 is produced by multiple peripheral and central cells, and until now, the putative roles of IL-6 from different cell types have been evaluated through conditional cell-specific IL-6 knockout mice. Nevertheless, these mice probably undergo compensatory responses of IL-6 from other cells, which makes it difficult to assess the role of each source of IL-6. Methods To give some insight into this problem, we have produced a novel mouse model: a conditional reversible IL-6 KO mouse (IL6-DIO-KO). By using double-inverted, open-reading-frame (DIO) technology, we created a mouse line with the loss of Il6 expression in all cells that can be restored by the action of Cre recombinase. Since microglia are one of the most important sources and targets of IL-6 into the central nervous system, we have recovered microglial Il6 expression in IL6-DIO-KO mice through breeding to Cx3cr1-CreER mice and subsequent injection of tamoxifen (TAM) when mice were 10–16 weeks old. Then, they were immunized with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55) 7 weeks after TAM treatment to induce EAE. Clinical symptoms and demyelination, CD3 infiltration, and gliosis in the spinal cord were evaluated. Results IL6-DIO-KO mice were resistant to EAE, validating the new model. Restoration of microglial Il6 was sufficient to develop a mild version of EAE-related clinical symptoms and neuropathology. Conclusions IL6-DIO-KO mouse is an excellent model to understand in detail the role of specific cellular sources of IL-6 within a recovery-of-function paradigm in EAE.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3922
Author(s):  
Ivana Stevanovic ◽  
Milica Ninkovic ◽  
Bojana Mancic ◽  
Marija Milivojevic ◽  
Ivana Stojanovic ◽  
...  

Cortical theta burst stimulation (TBS) structured as intermittent (iTBS) and continuous (cTBS) could prevent the progression of the experimental autoimmune encephalomyelitis (EAE). The interplay of brain antioxidant defense systems against free radicals (FRs) overproduction induced by EAE, as well as during iTBS or cTBS, have not been entirely investigated. This study aimed to examine whether oxidative-nitrogen stress (ONS) is one of the underlying pathophysiological mechanisms of EAE, which may be changed in terms of health improvement by iTBS or cTBS. Dark Agouti strain female rats were tested for the effects of EAE and TBS. The rats were randomly divided into the control group, rats specifically immunized for EAE and nonspecifically immuno-stimulated with Complete Freund’s adjuvant. TBS or sham TBS was applied to EAE rats from 14th–24th post-immunization day. Superoxide dismutase activity, levels of superoxide anion (O2•–), lipid peroxidation, glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH), and thioredoxin reductase (TrxR) activity were analyzed in rat spinal cords homogenates. The severity of EAE clinical coincided with the climax of ONS. The most critical result refers to TrxR, which immensely responded against the applied stressors of the central nervous system (CNS), including immunization and TBS. We found that the compensatory neuroprotective role of TrxR upregulation is a positive feedback mechanism that reduces the harmfulness of ONS. iTBS and cTBS both modulate the biochemical environment against ONS at a distance from the area of stimulation, alleviating symptoms of EAE. The results of our study increase the understanding of FRs’ interplay and the role of Trx/TrxR in ONS-associated neuroinflammatory diseases, such as EAE. Also, our results might help the development of new ideas for designing more effective medical treatment, combining neuropsychological with noninvasive neurostimulation–neuromodulation techniques to patients living with MS.


Sign in / Sign up

Export Citation Format

Share Document