scholarly journals Aberrant gene expression profiles in hepatocellular carcinoma detected by microdissection

2013 ◽  
Vol 12 (4) ◽  
pp. 5527-5536
Author(s):  
Y.M. Wei ◽  
Y.Y. Li ◽  
Y.C. Zhang ◽  
Y.Q. Nie
2021 ◽  
Vol 12 ◽  
Author(s):  
Nishat Fatima ◽  
Syed Shabihe Raza Baqri ◽  
Atrayee Bhattacharya ◽  
Nii Koney-Kwaku Koney ◽  
Kazim Husain ◽  
...  

Epigenetic regulation involves reversible changes in histones and DNA modifications that can be inherited without any changes in the DNA sequence. Dysregulation of normal epigenetic processes can lead to aberrant gene expression as observed in many diseases, notably cancer. Recent insights into the mechanisms of DNA methylation, histone modifications, and non-coding RNAs involved in altered gene expression profiles of tumor cells have caused a paradigm shift in the diagnostic and therapeutic approaches towards cancer. There has been a surge in search for compounds that could modulate the altered epigenetic landscape of tumor cells, and to exploit their therapeutic potential against cancers. Flavonoids are naturally occurring phenol compounds which are abundantly found among phytochemicals and have potentials to modulate epigenetic processes. Knowledge of the precise flavonoid-mediated epigenetic alterations is needed for the development of epigenetics drugs and combinatorial therapeutic approaches against cancers. This review is aimed to comprehensively explore the epigenetic modulations of flavonoids and their anti-tumor activities.


Chemosphere ◽  
2019 ◽  
Vol 216 ◽  
pp. 48-58 ◽  
Author(s):  
Marilena Di Natale ◽  
Carmelo Bennici ◽  
Girolama Biondo ◽  
Tiziana Masullo ◽  
Calogera Monastero ◽  
...  

Oncogene ◽  
2002 ◽  
Vol 21 (18) ◽  
pp. 2926-2937 ◽  
Author(s):  
Oona Delpuech ◽  
Jean-Baptiste Trabut ◽  
Françoise Carnot ◽  
Jean Feuillard ◽  
Christian Brechot ◽  
...  

2021 ◽  
Author(s):  
Lingyu Zhang ◽  
Yu Li ◽  
Yibei Dai ◽  
Danhua Wang ◽  
Xuchu Wang ◽  
...  

Abstract Metabolic pattern reconstruction is an important element in tumor progression. The metabolism of tumor cells is characterized by the abnormal increase of anaerobic glycolysis, regardless of the higher oxygen concentration, resulting in a large accumulation of energy from glucose sources, and contributes to rapid cell proliferation and tumor growth which is further referenced as the Warburg effect. We tried to reconstruct the metabolic pattern in the progression of cancer to screen which genetic changes are specific in cancer cells. A total of 12 common types of solid tumors were enrolled in the prospective study. Gene set enrichment analysis (GSEA) was implemented to analyze 9 glycolysis-related gene sets, which are closely related to the glycolysis process. Univariate and multivariate analyses were used to identify independent prognostic variables for the construction of a nomogram based on clinicopathological characteristics and a glycolysis-related gene prognostic index (GRGPI). The prognostic model based on glycolysis genes has the highest area under the curve (AUC) in LIHC (Liver hepatocellular carcinoma). 8-gene signatures (AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were related to overall survival (OS) and recurrence-free survival (RFS). Further analysis demonstrates that the prediction model can accurately distinguish between high- and low-risk cancer patients among patients in different clusters in LIHC. A nomogram with a well-fitted calibration curve based on gene expression profiles and clinical characteristics improves discrimination in internal and external cohorts. Furthermore, the altering expression of metabolic genes related to glycolysis may contribute to the reconstruction of the tumor-related microenvironment.


Sign in / Sign up

Export Citation Format

Share Document