scholarly journals Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

2016 ◽  
Vol 15 (2) ◽  
Author(s):  
T. Cui ◽  
M.S. Jiang
2009 ◽  
Vol 107 (3) ◽  
pp. 853-858 ◽  
Author(s):  
Christina M. Dieli-Conwright ◽  
Tanya M. Spektor ◽  
Judd C. Rice ◽  
E. Todd Schroeder

Hormone therapy (HT) is a potential treatment to relieve symptoms of menopause and prevent the onset of disease such as osteoporosis in postmenopausal women. We evaluated changes in markers of exercise-induced skeletal muscle damage and inflammation [serum creatine kinase (CK), serum lactate dehydrogenase (LDH), and skeletal muscle mRNA expression of IL-6, IL-8, IL-15, and TNF-α] in postmenopausal women after a high-intensity resistance exercise bout. Fourteen postmenopausal women were divided into two groups: women not using HT (control; n = 6, 59 ± 4 yr, 63 ± 17 kg) and women using traditional HT (HT; n = 8, 59 ± 4 yr, 89 ± 24 kg). Both groups performed 10 sets of 10 maximal eccentric repetitions of single-leg extension on the Cybex dynamometer at 60°/s with 20-s rest periods between sets. Muscle biopsies of the vastus lateralis were obtained from the exercised leg at baseline and 4 h after the exercise bout. Gene expression was determined by RT-PCR for IL-6, IL-8, IL-15, and TNF-α. Blood draws were performed at baseline and 3 days after exercise to measure CK and LDH. Independent t-tests were performed to test group differences (control vs. HT). A probability level of P ≤ 0.05 was used to determine statistical significance. We observed significantly greater changes in mRNA expression of IL-6, IL-8, IL-15, and TNF-α ( P ≤ 0.01) in the control group compared with the HT group after the exercise bout. CK and LDH levels were significantly greater after exercise ( P ≤ 0.01) in the control group. Postmenopausal women not using HT experienced greater muscle damage after maximal eccentric exercise, indicating a possible protective effect of HT against exercise-induced skeletal muscle damage.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 744 ◽  
Author(s):  
Eduard Isenmann ◽  
Franziska Blume ◽  
Daniel Bizjak ◽  
Vera Hundsdörfer ◽  
Sarah Pagano ◽  
...  

Physical performance and regeneration after exercise is enhanced by the ingestion of proteins and carbohydrates. These nutrients are generally consumed by athletes via whey protein and glucose-based shakes. In this study, effects of protein and carbohydrate on skeletal muscle regeneration, given either by shake or by a meal, were compared. 35 subjects performed a 10 km run. After exercise, they ingested nothing (control), a protein/glucose shake (shake) or a combination of white bread and sour milk cheese (food) in a randomized cross over design. Serum glucose (n = 35), serum insulin (n = 35), serum creatine kinase (n = 15) and myoglobin (n = 15), hematologic parameters, cortisol (n = 35), inflammation markers (n = 27) and leg strength (n = 15) as a functional marker were measured. Insulin secretion was significantly stimulated by shake and food. In contrast, only shake resulted in an increase of blood glucose. Food resulted in a decrease of pro, and stimulation of anti-inflammatory serum markers. The exercise induced skeletal muscle damage, indicated by serum creatine kinase and myoglobin, and exercise induced loss of leg strength was decreased by shake and food. Our data indicate that uptake of protein and carbohydrate by shake or food reduces exercise induced skeletal muscle damage and has pro-regenerative effects.


2009 ◽  
Vol 610 (1-3) ◽  
pp. 119-127 ◽  
Author(s):  
Jasson Chiang ◽  
Yuh-Chiang Shen ◽  
Yea-Hwey Wang ◽  
Yu-Chang Hou ◽  
Chien-Chih Chen ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 294
Author(s):  
Juan Mielgo-Ayuso ◽  
Diego Fernández-Lázaro

Exercise-induced muscle damage (EIMD) is characterized by histopathological muscle tissue changes that originate skeletal muscle damage [...]


Sign in / Sign up

Export Citation Format

Share Document